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Abstract—For future augmented reality (AR) and virtual
reality (VR) applications, several different kinds of sensors will
be used. These sensors, to give some examples, are used for
gesture recognition, head pose tracking and pupil tracking. All
these sensors send data to a host platform, where the data must
be processed in real-time. This requires high processing power
which leads to higher energy consumption. To lower the energy
consumption, optimizations of the image processing system are
necessary. This paper investigates pupil detection for AR/VR
applications based on images with reduced bit depths. It shows
that images with reduced bit depths even down to 3 or 2 bits
can be used for pupil detection, with almost the same average
detection rate. Reduced bit depths of an image reduces the
memory foot-print, which allows to perform in-sensor processing
for future image sensors and provides the foundation for future
in-sensor processing architectures.

Index Terms—pupil detection, smart image sensor, augmented
reality, virtual reality, bit depth, in-sensor processing

I. INTRODUCTION

Future AR/VR applications will contain several different
sensors for gesture recognition, head pose tracking and pupil
tracking. All these sensors send large amounts of the data
to a host platform, where the data needs to be processed in
real-time. Therefore, processing power and the corresponding
energy consumption is an important factor by designing new
AR/VR applications. As stated by Liu et al. [1] future image
sensors will contain a sensing layer stacked with a processing
layer. The first intelligent image sensor was developed by
Sony in the year 2020 [2]–[4]. A neural network (Mobilenet
V1) can be processed directly on the sensor for real-time
object detection/tracking. This sensor used such a stacked
configuration with a pixel chip and a stacked logic chip. The
memory and the digital signal processor (DSP) for processing
the neural network are parts of this logic chip. Another
important factor is the communication between the different
processing levels, described by Liu et al. in [5]. Future mobile
AR/VR devices could replace today’s smartphones. These
future devices require different sensors and communications
to different processing levels. Traditional image sensors and
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image processing systems can not meet the requirements of
power consumption and performance for these next generation
AR/VR devices [5]. Therefore, a combination of new image
sensor technologies and optimized in-sensor processing are
required. Since area and processing power for in-sensor pro-
cessing is very limited, optimizations of the image processing
system and of the processing architectures are necessary.

The main contributions of this work are:
• A small pupil detection dataset with 105 images with

ground truth pupil center coordinates. The dataset was
extended by images with reduced bit depths from 8 bits
down to 1 bit.

• Demonstrating the fact that the bit depth for pupil
detection can be reduced even down to 3 or 2 bits
while maintaining almost the same average detection rate
compared to 8 bits.

• Demonstrating that image sensors with reduced bit depths
can be the foundation for novel hardware architectures.
It enables in-sensor processing, which is of significant
importance for future AR/VR devices.

This paper is organized as follows: Section II shows related
work of smart image sensors in the field of AR/VR. Section
III gives an overview of the dataset for pupil detection with
reduced bit depths. Section IV shows the methodology of
the pupil detection with reduced bits per pixel of the images
and the evaluation metrics. Section V presents the results and
Section VI concludes the paper.

II. RELATED WORK

In the last few years the research of smart or intelligent
image sensor is growing. Also the demand for smart image
sensors is increasing due to upcoming AR/VR applications.

As stated by Liu et al. in [5] communications between the
processing levels have a big impact on the power consumption.
Therefore, research is trying to reduce the communication
from lower levels to higher levels.

One approach is to reduce the transmitted data by data
compression as described by Pinkham et. al in [6]. A neural
network is used to compress the data into a transmission map.



This saves energy of the communication on common wired and
wireless interfaces, but the total overall energy stays similar.

A related approach is to use smart communication inter-
faces, which switch into a low-power mode when no trans-
mission is required, as stated by Fiala et al. in [7]. In
addition, sending regions-of-interest (ROI) data lowers the
communication power consumption. Furthermore, with in-
sensor processing a more energy efficient host can be used
for the image processing system.

Another method is to split the image processing system into
two parts, one for in-sensor processing and one for the host
platform as described by Pinkham et. al [8]. Neural networks
can be split up to lower the overall power consumption. This
two-processor system approach is more suitable for smaller
neural networks.

Optimizing an algorithm as described by Fiala et al. [9] to
only integer operations, allows to remove the floating-point
units (FPU) of system-on-chip (SoC) designs for smart image
sensors. Since area and processing power are limiting factors
for in-sensor processing, optimizing an algorithm is a key
approach, which can also be applied to neural networks by
using quantization of the neural networks. The most famous
framework is TensorFlow-Lite [10] but also other frameworks
are developed like Apache TVM [11]. They optimize the
neural network by quantization of the 32-bit float values to
8 bit integers. With this optimization the memory footprint
is reduced. Apache TVM is a machine learning compiler
framework, which optimizes the code for specific hardware.
Furthermore, neural networks can be compressed by using a
sparse-structured matrix format, described by Mishra et. al
shown in [12]. A 2:4 sparsity pattern is introduced, which
increases the math throughput of dense matrix units with
a factor of 2. All of these methods are very important for
developing next generation AR/VR image sensors.

In this work, the required bit depth for pupil detection is
investigated and how far the bit depth can be reduced while
maintaining almost the same average pupil detection rate. A
computer vision (CV) based pupil detection algorithm is used
to detect the pupil center location. The pixel error is calculated
and the average detection rate is evaluated. A small dataset
with 105 images and ground truth data was generated and
further a dataset with reduced bit depths from 8 bits to 1 bit
was processed.

III. PUPIL DETECTION DATASET

In this work, a synthetic dataset was generated from a 3D
model. Synthetic eye data for pupil detection is used for state-
of-the-art eye tracking algorithms. These synthetic eye data
can be generated much faster from 3D models, which are
based on 3D model frameworks such as Unity1 [13], [14]
or Blender2 [19], [20]. There are several datasets for pupil
detection, gaze tracking and eye segmentation [15]–[19], but
we decided to generate our own dataset based on Blender to

1https://unity.com/
2https://www.blender.org/

be more flexible for future research. In this work the base
model was developed by Swirksi et al. [19], [20]. It was
extended with 3 additional iris colors for the eye and up to
8 light reflections (glints) can be selected. For this dataset,
only the left eye with an image resolution of 500x500 and 8
glints are used. Furthermore, a 3D to 2D mapping of the pupil
center coordinates was implemented and the 2D pupil center
coordinates are saved during the rendering process. Blender
2.78c [21] was used to render the dataset. Some images of the
dataset are shown in Fig.1. The rendered images are gray scale
images. The iris colors have different gray levels from nearly
black to brighter gray values. The iris colors are labeled from
left to right as nearly black, dark, dark brown, light and light
brown. The label names are used in the following sections.
Furthermore, the eyelid position, gaze direction, number of
glints (up to 8) and pupil size can be selected.

Fig. 1: Example images from the rendered dataset with all five
different iris colors, labeled as nearly black, dark, dark brown,
light and light brown (left to right), different eyelid positions,
gaze directions and pupil sizes with 8 glints.

The rendered dataset consists of 105 images with a bit
depth of 8 bits. They were used to generate additional datasets
(subsets) for 1, 2, 3, 4, 5, 6 and 7 bits. The bit values were
normalized between 0 and 255. An example for each iris color
with the reduced bit depths is shown in Fig. 2. The number
of bits per pixel are reduced from 8 bits (left) down to 1 bit
(right). The labeled color values are nearly black, dark, dark
brown, light and light brown from top to bottom.

IV. METHODOLOGY

As a first investigation in the reduction of the bit depths, an
open source implementation [22] of the pupil tracker algorithm
from Swirksi et al. [23] was used. The algorithm is an edge-
based pupil detection algorithm and was developed in 2012.
This algorithm is sufficient to analyze the pupil detection rate
based on images with reduced bit depths. It was modified
to process whole directories with images and to save the
calculated pupil center coordinates. These calculated pupil
center coordinates were compared with ground truth data to
derive the pixel error.

The processing pipeline is shown in Fig.3. First, the dataset
is generated with the ground truth data. The images are
adjusted to different bit depths, from 8 bits down to 1 bit,
and normalized to values between 0 and 255. We processed
the pupil center coordinates with the algorithm 10 times for all



Fig. 2: Examples of the dataset with the five different iris
colors and the corresponding images with the reduced bit
depth. From left to right the bit depth is reduce from 8 bits to
1 bit.

images and all bit depths. Then, the pixel error was calculated
based on the output of the algorithm and the ground truth data.
The pixel error is the Euclidean distance from the ground
truth pupil center coordinates to the calculated pupil center
coordinates. Based on the pixel error, the average detection
rate of the pupil detection algorithm was calculated. This was
done for all bit depths. The average detection rate was used as
the evaluation metric. It shows how often the pupil center was
detected for the given pixel error value. Usually, pixel errors
up to 5 are rated as correct detection.

Fig. 3: Processing pipeline from dataset generation to pixel
error calculation.

The algorithm calculates an integral image and uses Haar-
like features for a given radius to find the strongest response
for a possible pupil region. To approximate the pupil location,
intensity-based segmentation is used. An image histogram
is calculated and k-means clustering is used to segment the
histogram into 2 clusters. The dark cluster is assumed to be
the pupil and the other cluster represents the background.
Then, a binary image is calculated to find connected com-
ponents, where the largest represents the pupil. To perform
ellipse fitting, some image pre-processing steps are required.
A morphological ’open’ operation is used to remove features
like eyelashes and glints. Then, the edges between the pupil
and the iris are calculated with a Canny edge detector. From
the detected edge points, 5 are randomly taken to perform
Random Sample Consensus (RANSAC) to fit an ellipse. The
center position of the best ellipse fit is finally taken as pupil

center position. A more detailed description of the algorithm
can be found in [23].

Since some iris colors are very dark, the edges between the
pupil and the iris are not detected and instead of the pupil, the
iris region is found with the Haar-like features. Therefore, the
minimum and maximum radius must be set accordingly. Three
different settings for the radii were used, shown in Table I.
Since the pupil tracker algorithm randomly takes edge points
for the ellipse fitting step, all images were processed 10 times.
The average pixel error and the average detection rate were
calculated. The results are shown in the next section.

TABLE I: Parameters for Haar-like features with minimum and
maximum radius applied to all images of the whole dataset.

Minimum radius Maximum radius
17 38
17 85
55 85

V. RESULTS

In this section, the average detection rate of the pupil
detection algorithm for images with different bit depths is
discussed. The average detection rate across the whole dataset
for all three different radii settings is shown in Fig. 4. The
average detection rate is for bit depths from 8 bits downto 4
bits very close to each other. For 1 bit depth, we expected the
results to show a low detection rate, since the images are only
black and white. For a smaller range of the radii, the algorithm
has a very small drop in the average detection at 4 bits and
a bigger drop at 3 and 2 bits, shown in Fig. 4a. For a bigger
radii configuration the average detection rate is similar for 8
bits down to 2 bits, shown in Fig. 4a and Fig. 4c. With a radii
configuration of 55/85, the best results are with 2 and 3 bits
at a pixel error of 5.

Also, the results based on the iris colors are analyzed. The
best detection results for all 5 different iris colors are shown in
Fig. 5. For the nearly black iris, Fig. 5a, the radii settings are
55/85. This allows to fit around the iris edges, since the pupil
edges are not detected. However, the algorithm nearly gives
the same results for images with reduced bit depths down to
2 bits. For the dark brown iris color it is interesting to see,
that for 2 and 3 bits the average detection rate is the highest
at a pixel error of 5, shown in Fig. 5b. A similar behaviour
can be observed in Fig. 5c. The detection rate for the dark
iris is better for images with bit depths of 4 bits and higher,
shown in Fig. 5d. However, for a different radii configuration,
the average detection rate goes down. Interestingly, with a
pixel error of 5, 2 bits also result in almost the same average
detection rate, shown in Fig. 5e. The best average detection
rate is for the light iris, because the edges between the pupil
and the iris are very sharp. Also the detection rate for 8 bits
down to 2 bits is very similar, shown in Fig. 5f. In total, the
results are very similar across the images with the different bit
depths. However, the brighter the iris, the better the detection
rate (at least with this algorithm). This work shows that pupil



(a) (b)
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Fig. 4: Average detection rate for the given pixel error across
the whole dataset with different bit depths. (a) shows the
average detection rate for radii configuration 17/38. (b) shows
the average detection rate for radii configuration 17/85 and (c)
shows the average detection rate for radii configuration 55/85.

detection works based on images with reduced bit depths. The
best reduced bit depths is 4 bits, but for different configurations
bit depths even down to 2 bits can be used. This points to
a promising direction to design and develop novel hardware
architectures, which can be used for in-sensor processing in
resource-constrained smart image sensors for pupil detection.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a new dataset for pupil detection with
ground truth data and an extended dataset with images of
different bit depths from 8 bits down to 1 bit.

It shows, based on an edge-based pupil detection algorithm,
that pupil center coordinates can be detected in images with
reduced bit depths. The experiments show, that a reduction
of the bit depth is possible to 4 bits or in some cases even
down to 3 or 2 bits while maintaining almost the same average
detection rate compared to images with 8 bits.

The reduction of the bit depths allows to reduce the memory
footprint for images and can be the foundation for developing
novel hardware architectures, especially for in-sensor pro-
cessing for resource-constrained image sensors. Smart image
sensors specialized for pupil detection can be designed for
future AR/VR devices.

Future steps are to show that the same approach can be
applied to neural networks. Therefore, during writing this
paper, we render a much bigger dataset for pupil detection,
which we can use for training neural networks.
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Fig. 5: Average detection rate across subsets of the dataset
based on iris color. (a) shows the highest average detection
rate for the nearly black iris color with a radii configuration
55/85. (b) shows the average detection rate for the dark brown
iris color with radii configuration 55/85. (c) shows the average
detection rate for the light brown iris with a radii configuration
55/85. (d) shows the average detection rate for the dark iris
with a radii configuration 17/38. (e) shows again the average
detection rate for the dark iris but with a radii configuration
17/85. (f) shows the average detection rate for the light iris
with a radii configuration 17/38.
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