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Abstract

Recent advances in Graphics Processing Units (GPUs) provide opportunities to exploit
GPUs for non-graphics applications. Scientific computation is inherently parallel, which
is a good candidate to utilize the computing power of GPUs. This report investigates QR
factorization, which is an important building block of scientific computation. We analyze
different mapping mtheods of QR factorization on GPUs. The bottlenecks of them are
identified using an analytical model. The limitations of GPUs and its implications on
selection of algorithm are discussed. To explore the design space of parallel processing
architecture, an equal-area model is proposed. Given an application and an amount of
chip area, the equal-area model can provide quantitative information on performance and
bottleneck for making design decisions.
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1 Introduction

Graphics Processing Units (GPUs) were invented as a special-purposed hardware to accel-
erate the rendering of 3D graphics. In order to satisfy the demand of complicated shading
algorithms, shaders in GPU evolved from dedicated hardware into programmable proces-
sors. Modern GPU architectures, such as NVIDIA GeForce[24], ATI Radeon[2], and Intel
Larrabee[38], provide massive number of programmable processors for both graphics and
non-graphics applications.

Linear algebra algorithms are building blocks of scientific computations. Linear algebra
algorithms are inherently parallel, which provides great potential to benefit from parallel
processing systems. Early attempts to parallel linear algebra algorithms mainly focus on
distributed memory systems, such as clusters of workstations. Emerging shared memory
systems, such as multicore architecture, introduced new challenges to algorithm designers.
QR factorization is an important linear algebra algorithm for scientific computation. Two
methods are widely used to perform QR factorization, one is Householder QR factorization,
the other is Givens QR factorization. While Givens QR outperforms Householder QR on
distributed memory systems, such as clusters of workstations, Householder QR has significant
advantages over Givens QR on shared memory systems, such as multicore CPUs and GPUs.
This report investigates the reason of this difference.

The NVIDIA GeForce GPU is an example of an interleaved multithreading architecture,
which utilizes massive number of threads to hide memory latency and pipeline latency. It
utilizes several levels of memory hierarchy to capture data locality of the applications. The
design trade-offs for such architecture is not straightforward. This report proposes an equal-
area model to estimate the performance of an application on GeForce-like architecture. It
provides information for high-level architecture design decisions.

The contributions of this report are:

1. Extend existing analytical model of GPUs with kernel launch overhead and pipeline
warp parallelism.

2. Compare different methods of mapping QR factorization on distributed memory systems
and shared memory systems. Use an analytical model to identify the performance
bottleneck of QR factorization on GPUs. To the best of our knowledge, this is the first
work to analyze the trade-offs for different QR algorithms on different architectures.

3. Propose an equal-area model to perform architecture exploration for parallel processing
systems. To the best of our knowledge, this is the first attempt to model the performance
of GeForce-like architecture with area constraints.

This report is arranged as follows. In section 2, architecture and programming model of
GPUs are introduced. In section 3, extensions to existing analytical model are introduced. In
section 4, mapping methods of Givens QR algorithms on GPUs are introduced. Performance
of Householder and Givens QR algorithms on distributed memory systems and shared memory
systems are analyzed. The bottlenecks of Givens QR algorithm on GPUs are identified by an
analytical model. Its implications on algorithm selection for GPU architecture are discussed.
In section 6, we compare our work with previous work.
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2 GPU ARCHITECTURE

Graphics Pipeline Larrabee GeForce 8800

Vertex Shader CPU PE

Geometry Shader CPU PE

Rasterization CPU Raster

Pixel Shader CPU PE

Attribute Interpolation CPU SFU

Texture Filtering Tex Filter Logic Tex Unit

ROP CPU ROP Unit

Blending CPU ROP Unit

Table 1: Comparison of different approaches implementing graphics pipeline

2 GPU Architecture

Modern Graphics Processing Unit (GPU) contains massive number of programmable proces-
sors and a number of dedicated hardware for graphics application. NVIDIA GeForce 8800
GTX is an example of this architecture, as shown in Figure 1. GPUs were designed to render
3D graphics, which is implemented in several pipeline stages, as shown in Figure 2. There
are different approaches to map graphics pipelines onto GPUs, depending on the capabili-
ties of the GPU and the trade-offs between flexibility and efficiency. Mapping of graphics
pipelines on NVIDIA GeForece and Intel Larrabee are compared in Table 1. Programmable
processors on modern GPUs are capable of running non-graphics applications. On the other
hand, dedicated hardware on GPUs are difficult to be utilized in non-graphics applications.
Therefore, we omit dedicated hardware and focus on the programmable processors in the
following discussion. The following discussion is divided into two parts. First, the hardware
architecture of GPUs is introduced. Then, the programming model of GPUs is introduced.

2.1 Hardware Architecture

Figure 1 shows the block diagram of NVIDIA GeForce 8800 GTX. It contains eight Texture
Processing Clusters (TPCs), each consists of two Stream Multiprocessors (SMs) and one Tex-
ture Unit shared by two SMs. Each SM contains 8 Processing Elements (PEs). To fully utilize
the massive number of PEs, multithreading is applied. Threads are scheduled to eliminate
both horizontal waste, due to control divergence of the SIMD SM, and vertical waste, due to
global memory latency, as shown in Figure 3. NVIDIA called the microarchitecture of SM
“Single Instruction Multiple Thread (SIMT)”. Table 2 shows a classification of David Pat-
terson and John Hennessy[30], where SIMT is classified as dynamic Data Level Parallelism
(DLP). In this classification, Interleaved Multithreading SIMD architectures[27][37] are clas-
sified as static DLP, because data is processed statically on the horizontal direction and is
processed in lock step at runtime. On the other hand, SIMT architecture creates horizontal
threads either statically[24] or dynamically[10] to process horizontal data, maintains contexts
of each horizontal threads, replaces horizontal lock step with barrier synchronization for both
horizontal and vertical threads.

NVIDIA did not reveal detailed implementation of its SIMT architecture. According to
descriptions of SMs in GeForce 8800 GTX[24], this paper proposes an implementation of an
SIMT architecture, as shown in Figure 4. At runtime, an SM groups 32 threads into one
warp, either statically[24] or dynamically[10], which is scheduled to execute on eight PEs.
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2.1 Hardware Architecture
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Figure 1: Block Diagram of NVIDIA GeForce 8800 GTX. SM: Stream Multiprocessor. MT
issue: Multithread Issue Unit. SFU: Special Function Unit.

Vertex Shader Geometry Shader

Primitive Assembler

Rasterization

Clipping, Culling

Pixel Shader

Attribute Interpolation

Texture Filtering

ROP

Blending

Figure 2: A Typical Graphics pipeline

Static Dynamic

ILP VLIW Superscalar

DLP SIMD SIMT

Table 2: Classification of SIMT by David Patterson and John Hennessy
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2 GPU ARCHITECTURE

Horizontal waste due to branch

Horizontal waste due to branch

Vertical waste due to memory access

time

Horizontal multithreading over 8 PEs

Vertical

interleaved

multithreading

over time

Figure 3: Multithreading on both horizontal direction and vertical direction.

The MT Issue Unit broadcasts the same instruction to all PEs in a similar way as SIMD.
Threads in the same warp begin at the same instruction of the program, but are later free to
branch to different locations, which is managed by branch stacks. When threads within the
same warp diverge at a branch, both paths of the branch are executed, masking out threads
of the other path.

Each SM in the GeForce 8800 GTX can maintain contexts of 24 warps. It contains 8192
registers dynamically allocated by threads at runtime. It contains 16 KBytes shared memory
partitioned into 16 banks, which are accessed by PEs via a crossbar. Operands of PEs are
collected from shared memory and registers. Operands go through several pipeline stages in
the operand collector before arriving at PEs. PEs in the GeForce 8800 GTX run at the core
clock rate, which is twice the clock rate of other components in SM. One warp is executed as
two halfwarps. One halfwarp of 16 threads is executed by 8 PEs in two core clock cycles. At
the first core clock cycle, PEs read the operands of the first 8 threads from operand collector
and perform operation. At the second core clock cycle, PEs read operands for the next 8
threads from the operand collector and duplicate the same operation in the previous cycle.
Results are written back to shared memory or registers every two core clock cycles.

The SM Issue Unit consists of one instruction fetch and decode unit, one instruction
window for each warp, one scoreboard for each warp, and one scoreboard processing unit.
The scoreboard processing unit prioritizes and selects warps to be fetched from instruction
cache and warps to be issued for execution every four core clock cycles. The scheduling unit
may use simple scheduling algorithms such as round robin or use sophisticated algorithms
such as “post-dominator” described by Wilson Fung[10]. The GeForce 8800 uses a narrow
instruction window for each warp, which limits performance if there are not enough warps
available to hide the pipeline latency. The GeForce 8800 requires at least 6 warps to hide the
pipeline latency of 24 core clock cycles. By increasing the size of the instruction window and
scoreboard RAM, the SIMT architecture can utilize potential instruction level parallelism
and issue new instructions before the writeback of previous instructions of the same warp.
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2.1 Hardware Architecture
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Figure 4: Proposed implementation of the Stream Multiprocessor
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3 ANALYTICAL MODEL OF GPU

However, the trade-offs between performance and area are beyond the scope of this paper.

2.2 Programming Model

Compute Unified Device Architecture (CUDA) is a language provided by NVIDIA to program
its GPUs. CUDA extends the C language with directives for an SIMT architecture. CUDA
forces programmers to express data level parallelism in terms of thread level parallelism.
Unlike traditional SIMD programs, which implicitly specify data dependency via program
order and lock-step execution, CUDA programs explicitly specify thread dependency via
barrier synchronization. A CUDA program consists of host code and device code. The device
code, also called kernels, is offloaded to GPU by the host code. CUDA provides two levels of
thread hierarchy, as shown in Figure 5. At the first level, multiple threads are grouped into a
thread block, within which threads can synchronize via barriers specified by programmer. At
the second level, multiple thread blocks are further grouped into a grid, within which thread
blocks are independent to each other. Threads within the same thread block are always
assigned to the same SM. Different thread blocks can be assigned either to the same SM or
to different SMs. Thread blocks can be executed in arbitrary order, which is scheduled at run
time.

MIMD threads are dynamically grouped into warps and scheduled to run on SIMD hard-
ware at runtime. The warp concept, as an implementation method, is transparent to CUDA
programmers. One thread block in a CUDA program is implemented as one Cooperative
Thread Array (CTA) in hardware. Thread blocks and the CTA have one to one correspon-
dence, and are used interchangeably. Figure 6 shows an example of executing one CUDA
kernel a GPU1.

3 Analytical Model of GPU

Due to the complicated run time dynamism and multiple levels of memory hierarchy, analyzing
the bottlenecks of applications mapped to GPU is not straightforward. Roofline model[?] pro-
vides methods to analyze the bottlenecks of applications mapped to multicore architectures.
It uses computation intensity of the application, memory bandwidth and peak performance
of the architecture, as model parameters. Given an application and an architecture, Roofline
model tells whether the application is computation bounded or bandwidth bounded. While
Roofline model is powerful as a high-level analysis method, it does not model the overlap
behavior of computation threads and memory access threads in GPU architectures.

Sunpyo Hong and Hyesoon Kim[15] proposed an analytical model for GPUs. They
introduced concepts of Memory Warp Parallelism(MWP) and Computation Warp Paral-
lelism(CWP). MWP measures the number of warps that can simultaneously access global
memory. CWP measures the number of warps that can overlap with memory access. The
bottlenecks of applications are classified into three cases. Methods to estimate the perfor-
mance are different in each case.

Case 1: Not enough warps running. MWP and CWP are limited by active warps per SM.

Case 2: Memory bound. CWP is larger than MWP.

1This example assumes a GPU of 5 SMs and each SM can schedule 24 warps. In 8800 GTX, which has 16
SMs, a kernel of 15 CTAs will be assigned to 15 different SMs, leaving one SM idle.
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Figure 5: Thread hierarchy in CUDA programming model. Kernel-A has 6 thread blocks.
Each thread block consists of 64 threads. Kernel-B has 15 thread blocks. Each thread block
consists of 256 threads.
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3 ANALYTICAL MODEL OF GPU
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Figure 6: Thread hierarchy in hardware. Example of processing a kernel of 15 CTAs on GPU.
Each CTA consists of 256 threads. Eight warps are formed at run time to processes one CTA.
At most three CTAs can be scheduled to one SM.

Parameter Definition Obtained

Overhead per kernel kernel launch overhead computed
Args number of arguments passed from CPU to GPU Programmer specifies
Overhead per block increment of Overhead per kernel by increment of one block Machine Conf.
Overhead per arg increment of Overhead per kernel by increment of one argument Machine Conf.
Overhead base Overhead per kernel for kernel with one block and zero argument Machine Conf.

Table 3: Model Parameters for Kernel Launch Overhead

Case 3: Computation bound. MWP is larger than CWP.

It provides more insights into the bottlenecks of applications on GPU architectures than the
Roofline model. Although it provides accurate performance estimations for most applications,
experiments show that it may not be sufficient for some cases. This paper extends it with
kernel launch overhead and Pipeline Warp Parallelism(PWP).

3.1 Kernel Launch Overhead

Kernel launch overhead for kernels with different number of thread blocks(50-1000), blocks
with different number of threads(32, 64, 128), and threads with different number of arguments(0-
10) is shown in Figure 7. The detail for small number of blocks(2-50) are shown in Figure 8.
We use additional model parameters for kernel launch overhead, as shown in Table 3.

Based on benchmark results, we have the following observations.

1. Overhead per kernel has approximately linear relation with Blocks. Args does has little
effect on Overhead per block.

2. Args per thread has approximately linear relation with Overhead per kernel. Blocks has
little effect on Overhead per arg.

3. Threads per block has little effect on Overhead per kernel.

Equation 1 computes Overhead per kernel.

Overhead per kernel = Overhead per block×Blocks+Overhead per arg×Args+Overhead base
(1)
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3.1 Kernel Launch Overhead
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Figure 7: Kernel launch overhead for kernels with different number of thread blocks(50-1000),
blocks with different number of threads(32, 64, 128), and threads with different number of
arguments(0-10).
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Figure 8: Kernel launch overhead for small number of blocks(2-50)
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3.2 Pipeline Warp Parallelism

Parameter Value

Overhead Base 0.011 ms
(17600 cycles)

Overhead per arg 0.0005 ms
(800 cycles)

Overhead per block 0.00001 ms
(16 cycles)

Table 4: Model Parameters measured in GeForce 8800 GT (core freq 1.6 GHz)

For GeForce 8800 GT, the model parameters are shown in Table 4.

3.2 Pipeline Warp Parallelism

This report introduces the concept of Pipeline Warp Parallelism (PWP), which represents
the maximum number of warps per SM that can be in the execution pipeline of SM. In
Sunpyo Hong and Hyesoon Kim’s analytical model[15], Comp cycles is used to represent the
computation cycles of each warp, as shown in Equation 2.

Comp cycles = Issue cycles×
(Comp insts + Mem insts) (2)

This parameter Issue cycles comes from machine configuration. The parameters Comp insts
and Mem insts come from source code analysis. In GeForce 8800 architecture, pipeline latency
of a compute instruction is at least 24 cycles. The next instruction can not be issued until
the previous instruction of the same warp writes back the result. With an Issue cycles of
4, Active warps per SM should be at least 6 to hide the pipeline latency. We extend the
parameter Comp cycles to model the situation where pipeline latency can not be hidden.
PWP and Comp cycles are computed by Equations 4 and 5. For applications with fine-
grained synchronizations, such as Givens QR factorization, the optimum number of active
warps per SM may be less than six, in which case the effect of PWP can be observed, as
shown in Figure 9.

PWP full =
Pipeline latency

Issue cycles
(3)

PWP = MIN (PWP full,Active warps per SM) (4)

Comp cycles = Issue cycles×
(

PWP full

PWP
× Comp insts + Mem insts

)

(5)

4 QR Factorization

Scientific computing is one of the most computation demanding applications. Due to the
inherent parallelism of scientific computing, it benefits from parallel processing architectures.
QR factorization, as an important building block of scientific computing algorithms, has been
mapped onto different parallel processing architectures. Mapping QR factorization on parallel
architectures is not trivial. The trade-offs between different QR factorization algorithms on
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Figure 9: Givens QR factorization with Active warps per SM equal to 2.

different architectures will be discussed in this chapter. We first provide a short introduction
to QR factorization algorithms.

This report considers QR factorization for real number. QR factorization for complex
number are performed in similar manner. For a real matrix A of m rows and n columns, the
QR factorization of A satisfies,

A = QR (6)

where R is an upper triangular matrix and Q is an orthogonal matrix, namely,

QT Q = I (7)

There are two algorithms to perform QR factorization. One is Householder QR factorization.
The other is Givens QR factorization. They will be discussed in the following sections.

4.1 Householder QR Factorization

The Householder QR algorithm annihilates A in a column-by-column manner, as shown in
Equation 8.









∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗









→









∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗









→









∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗









(8)

To annihilate column A(i : m, i), the algorithm generates a Householder reflector vi, such
that,

(

I − 2
viv

T
i

‖vi‖2
)

A(i : m, i) = αe1 = α(1, 0, ..., 0)T (9)
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Figure 10: Annihilating vector ~a to α~e1

α has its sign equal to A(i, i) and its value equal to the norm of vector A(i : m, i), as shown
in Equation 10.

α = sign(A(i, i)) · ‖A(i : m, i)‖ (10)

The Householder reflector vi can be obtained by Equation 11.

vi = A(i : m, i)− αe1 = ( A(i, i) − α, A(i + 1, i), A(i + 2, i), ..., A(m, i) )T (11)

It can be verified that vi obtained from Equation 11 is correct, as shown in Equation 12.

(

I − 2
viv

T
i

‖vi‖2
)

A(i : m, i) = A(i : m, i)− 2
viv

T
i

‖vi‖2
A(i : m, i) = A(i : m, i)− vi = αe1 (12)

Figure 10 shows an example of a three dimensional vector ~a reflected to α~e1 over plane P .
The unit normal vector of P is ~v

‖~v‖ . Projection of ~a on ~v
‖~v‖ has the value ~v·~a

‖~v‖ , which is equal

to ‖~v‖
2 . Therefore, ~v = 2 ~v·~a

‖~v‖
~v
‖~v‖ .

Householder matrix is defined in Equation 13

Hi = I − 2
viv

T
i

‖vi‖2
(13)

If we define τi = 2
‖vi‖

2 , then the Householder matrix can be written as Equation 14.

Hi = I − τiviv
T
i (14)

One Householder matrix is generated and applied to matrix A on each iteration. After n
iterations, matrix A becomes upper triangle, as shown in Equation 15.

HnHn−1...H2H1A = R (15)

The orthogonal matrix Q can be obtained from Equation 16

Q = H−1
1 H−1

2 ...H−1
n−1H

−1
n = H1H2...Hn−1Hn (16)

15



4 QR FACTORIZATION

Algorithm 1 is a simple implementation of the Householder QR algorithm. It use two stan-
dard routines, SLARFP2 and SLARF3, of LAPACK to produce and apply the Householder
reflector.

Algorithm 1: Householder-QR(A)

input : Matrix A with m rows and n columns
output: Matrix R
for i = 1 to n do1

Call routine SLARFP to produce Householder reflector vi and τi for column A(i:m,i).2

Call routine SLARF to apply the Householder matrix Hi to the trailing matrix.3

end4

return R5

Instead of updating one column in each iteration, the compact WY representation[36],
also called YT representation, of the Householder QR algorithm updates a panel of multiple
columns in each iteration, as shown in Algorithm 2. The Householder matrix H is formed by
Y and T matrix, as shown in Equation 17. For panel size of r columns, Y is an m× r matrix
generated by r Householder reflector v, and T is an r×r matrix generated by standard lapack
routine SLARFT 4. Details of the YT representation is available at [36].

H = I + Y TY T (17)

Algorithm 2: Householder-QR-Panel(A)

input : Matrix A with m rows and n columns
output: Matrix R
for k = 1 to (n/r) do1

s← (k − 1) · r + 12

for i = s to (s + r − 1) do3

Call SLARFP to produce Householder reflector vi and τi for column A(i:m,i).4

Call SLARF to apply Householder matrix Hi to trailing matrix A(i:m,i:s+r-1).5

end6

Call SLARFT to generate the T matrix.7

Apply Householder matrix H to trailing matrix A(s:m,s+r:n).8

end9

return R10

4.2 Givens QR Factorization

The Givens QR factorization annihilates matrix A in an element-by-element manner, as shown
in Equation 18.

2Available at http://www.netlib.org/lapack/explore-html/slarfp.f.html
3Available at http://www.netlib.org/lapack/explore-html/slarf.f.html
4Available at http://www.netlib.org/lapack/explore-html/slarft.f.html
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4.2 Givens QR Factorization









∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗









→









∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗









→









∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗









→









∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗









→









∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗









→









∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗









(18)

To annihilate an element A(j,k), another non-zero element in the same column k, say
A(i,k), needs to be used to generate a rotation angle θ such that,

(

cosθ sinθ
−sinθ cosθ

)(

A(i, k)
A(j, k)

)

=

(

r
0

)

(19)

Equation 19 performs a clockwise rotation of vector (A(i, k), A(j, k))T by angle θ, as shown in
Figure 11. In each iteration of the Givens QR algorithm, a Givens matrix G(i, j, θ) is generated
by two elements A(i, k) and A(j, k). In the same iteration, G(i, j, θ) is applied to two rows
A(i, :) and A(j, :), as shown in Equation 20. Algorithm 3 is a simple implementation of the
Givens QR algorithm. It uses two standard routines, SROTG5 and SROT 6, of LAPACK to
generate and apply the Givens matrix.

G(i, j, θ)A =



























1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cosθ · · · sinθ · · · 0
...

...
. . .

...
...

0 · · · −sinθ · · · cosθ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1





















































∗ · · · ∗ ∗ ∗ · · · ∗
...

...
...

...
...

0 · · · 0 A(i, k) ∗ · · · ∗
...

...
...

...
...

0 · · · 0 A(j, k) ∗ · · · ∗
...

...
...

...
...

∗ · · · ∗ ∗ ∗ · · · ∗



























=



























∗ · · · ∗ ∗ ∗ · · · ∗
...

...
...

...
...

0 · · · 0 r ∗′ · · · ∗′
...

...
...

...
...

0 · · · 0 0 ∗′ · · · ∗′
...

...
...

...
...

∗ · · · ∗ ∗ ∗ · · · ∗



























(20)

5Available at http://www.netlib.org/lapack/explore-html/srotg.f.html
6Available at http://www.netlib.org/lapack/explore-html/srot.f.html
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Figure 11: Annihilating element A(j, k) by element A(i, k)

Algorithm 3: Givens-QR(A)

input : Matrix A with m rows and n columns
output: Matrix R
for k = 1 to n do1

for j = m to n + 1 do2

i← j − 13

Call routine SROTG to generate G(i, j, θ) from elements A(i, k) and A(j, k).4

Call routine SROT to apply G(i, j, θ) to rows A(i, k + 1 : n) and A(j, k + 1 : n).5

end6

end7

return R8

4.3 Performance Analysis of QR Factorization

Both Householder QR and Givens QR have been mapped and optimized on distributed
memory systems decades ago. On clusters of workstations, which is a typical distributed
memory system, Givens QR may outperform Householder QR due to lower communication
complexity[7].

Both Householder QR and Givens QR have been mapped and optimized on multicore
shared memory systems, including GPUs. The Householder QR algorithm has been partially[43]
and completely[19] mapped on GPUs. The Givens QR has also been mapped on GPUs[26][18].
The Householder QR outperforms Givens QR by two orders of magnitude on GPUs.

It is observed that the Givens QR is more suitable on distributed memory systems, while
the Householder QR is more suitable on shared memory systems. To the best of my knowledge,
no previous work has quantitatively explained the reason of the above observation. This
section analyzes and explains the performance of two different algorithms on two different
architectures.

The analysis assumes the amount of computation is the same for different mapping meth-
ods of the same algorithm. The amount of communication is modeled by two parameters, λ,
the time needed to transfer a word, and β, the start-up time of one communication. Table 5
summarize the notations used in the analysis. For the convenience of comparison, only the
highest order term is kept during the calculation.
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4.3 Performance Analysis of QR Factorization

Parameters Description

m Number of rows of matrix A
n Number of Columns of matrix A
p Number of Processors
b Block-based algorithms use block size of b × b. Panel-based updates use panel of b columns.
λ Time needed to transfer a word
β Start-up time of one communication

HDM Householder QR on Distributed Memory Systems
GDM Givens QR on Distributed Memory Systems
HSM Householder QR on Shared Memory Systems
GSM Givens QR on Shared Memory Systems

HDMC Column-based HDM

GDMR Row-based GDM

HSMB Use Algorithm 2 to generate panel, then perform block-based matrix multiplication[43].
GSMR Row-based GSM when scratchpad memory can store two rows.

GSMRNS Row-based GSM when scratchpad memory can not store two rows.
GSMC Column-based GSM

GSMP Panel-based GSM when scratchpad memory can store one column.
GSMPNS Panel-based GSM when scratchpad memory can not store one column.
GSMB Block-based GSM

* comm Communication time
* comp Computation time

Table 5: Summary of notations

4.3.1 QR Factorizations on Distributed Memory Systems

The communication time of column-based HDM(HDMC) is shown in Equation 21. Each
processor stores several columns of matrix A in its local memory. In each iteration, one
processor generates a Householder reflector, and then broadcasts it to other processors to
update the trailing matrix.

HDMC comm ≈
n−1
∑

i=0

(m− i) · λ + n · β

≈ (2m− n)n

2
· λ + n · β (21)

The communication time of row-based Givens QR algorithm on Distributed Memory Sys-
tem(GDMR) is shown in Equation 22. Row i of matrix A is stored in the local memory of
processor (i modulo p). In each iteration, one column is eliminated and the trailing matrix
is updated. Each iteration has two phases, an internal rotation phase(IP) and a recursive
elimination phase(RP)[31]. The IP phase does not incur communication, while the RP phase
requires log p transactions. During each transaction, one row is transferred between two
processors. Figure 12 shows an example of GDMR.

GDMR comm ≈
n−1
∑

i=0

(log p)(n− i) · λ + (n log p) · β

≈ (
n2

2
log p) · λ + (n log p) · β (22)

In distributed memory systems, β is relatively small compared to λ. Therefore, only
the time for data transfers is considered in the comparison. For matrices with m > n and
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(a) IP step1 (b) IP step2 (c) IP step3

(d) RP step1 (e) RP step2 (f) RP step3

Annihilated

Rotated

Updated

(g) Legend

Figure 12: GDMR of a 32 × 5 matrix mapped to 8 processors. Row i is stored in the local
memory of processor (i modulo 8).
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4.3 Performance Analysis of QR Factorization

a small number of processors, the communication time of GDMR is smaller than HDMC.
This explains the reason Givens QR algorithm may outperform Householder QR on clusters
of workstations, as shown by [7]. However, for matrices with m ≈ n or large number of
processors, the HDMC may outperform GDMR. The trade-offs between HDMC and GDMR
over m, n and p is illustrated in Figure 13.
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Figure 13: Communication complexity of two QR algorithms on distributed memory systems.

4.3.2 QR Factorizations on Shared Memory Systems

The communication time of block-based HSM is shown in Equation 23. Table 6 summarizes
the notations used in the analysis.

Parameters Description Mem access in i iteration

TYA ld Load panel TY and matrix A to perform multiplication. 2(m − i · b)(n − i · b)
TYA st Store panel TYA resulting from multiplicaiton of TY and A. b(m − i ∗ b)

YTYA ld Load panel Y and TYA to perform multiplication. (m − i ∗ b)(n − i · b)
YTYA st Store panel YTYA resulting from multiplicaiton of Y and TYA. (m − i ∗ b)(n − i · b)

Table 6: Summary of notations
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4 QR FACTORIZATION

HSMB comm

≈
n/b
∑

i=0

[(TYA ld + TYA st + YTYA ld + YTYA st) · λ + β]

≈
n/b
∑

i=0

[4(m− i · b)(n − i · b) + b · (m− i · b)] · λ +
n

b
· β

≈





n/b
∑

i=0

4(m− i · b)(n − i · b) +

n/b
∑

i=0

b · (m− i · b)



 · λ +
n

b
· β

≈
(

4(b + n)(b · n + 3m · n− n2)

6b
+

(b + n)(2m− n)

2

)

· λ +
n

b
· β

≈ 4(3m− n)n2

6b
· λ +

n

b
· β (23)

If the scratchpad memory of the cluster can store one row of the matrix, the communication
time of a row based GSM algorithm is equal to:

GSMR comm ≈
n−1
∑

i=0

[(2(m− i) · (n− i) + 2p · (n − i)) · λ + (log b) · β]

≈
(

3(3m− n)n2

6
+ p · n(n + 1)

)

· λ + (n log p) · β

≈ 3(3m− n)n2

6
· λ + (n log p) · β (24)

If the scratchpad memory of the cluster can not store one row of the matrix, the commu-
nication time of a row based GSM algorithm is equal to:

GSMRNS comm ≈
n−1
∑

i=0

[(4(m− i) · (n− i) + 2p · (n − i)) · λ + (log b) · β]

≈
(

4(3m− n)n2

6
+ p · n(n + 1)

)

· λ + (n log p) · β

≈ 4(3m− n)n2

6
· λ + (n log p) · β (25)

The communication time of a column based GSM algorithm is equal to:

GSMC comm ≈
n−1
∑

i=0

[(2(m− i)(n − i) + (m− i)(n − i)) · λ + β]

≈ 3(3m− n)n2

6
· λ + n · β (26)
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If the local memory of the cluster can store one column of matrix A, then we can update
a panel of multiple columns in each iteration. The communication time of GSMP is equal to:

GSMP comm ≈
n/b
∑

i=0

[(2(m− i · b) · (n − i · b) + b · (m− i · b)(n− i · b)) · λ + β]

≈ (2 + b)(b + n)(b · n + 3m · n− n2)

6b
· λ +

n

b
· β

≈ (2
b + 1)(3m − n)n2

6
· λ +

n

b
· β (27)

If the local memory of the cluster can not store one column of the matrix, then the
communication time of GSMP is equal to:

GSMPNS comm ≈
n/b
∑

i=0

[(2b(m− i · b) · (n− i · b) + b · (m− i · b)(n − i · b)) · λ + β]

≈ (2b + b)(b + n)(b · n + 3m · n− n2)

6b
· λ +

n

b
· β

≈ 3(3m− n)n2

6
· λ +

n

b
· β (28)

A block based GSM algorithm loads and stores a b × b block of matrix A into its lo-
cal memory. Each iteration has two phases, an internal rotation phase(IP) and a recursive
elimination phase(RP). The communication time is equal to:

GSMB comm ≈
n/b
∑

i=0

[(

(2 +
1

2
)(m− i · b)(n− i · b) + (1 +

1

2
)(m− i · b)(n− i · b)

)

· λ + 2 · β
]

≈ 4(b + n)(b · n + 3m · n− n2)

6b
· λ +

2n

b
· β

≈ 4(3m− n)n2

6b
· λ +

2n

b
· β (29)

Figure 14 compares the communication complexity of different algorithms in the above
analysis.

According to the analysis above, HSMB and GSMB have the least memory access time.
However, GSMB requires fine-grained synchronization to triangulate blocks, which cause
threads within a warp to diverge at branch, while HSMB only performs matrix multiplication
within blocks, which does not cause divergence at branch. Therefore, GSMB is expected to
be slower than HSMB. To verify this conjecture, prototype CUDA programs of GSMB and
GSMP are constructed. The prototype programs are optimistic on performance because they
always perform coalesced global memory access and ignore the irregular working set size,
which adds overheads in a correct program. Experiments show the performance overhead
of a correct program over a prototype program is less than 10%. Therefore, the prototype
program is good enough for a rough performance estimation. The prototype program shows
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Figure 14: Communication complexity of different QR algorithms on shared memory systems.

GSMB is slower than both HSMB and GSMP, due to the reason discussed above. Therefore,
GSMB is not considered for further optimization and verification.

According to the analysis above, when the scratchpad memory can store one column
or two rows of the matrix A, GSMP has less communication time than GSMR. When the
scratchpad memory can not store one column or two rows of the matrix A, GSMPNS has less
communication time than GSMRNS. Therefore, GSMP and GSMPNS are selected for further
optimization and verification.

4.4 Experimental Results and Analysis

Several optimizations are performed on GSMP and GSMPNS, including global memory co-
alescing, shared memory coalescing, caching, loop unrolling, panel size tuning, block size
tuning. The global memory coalescing provides an improvement with a factor of 10 in perfor-
mance, while the other optimization techniques provide minor improvements. Loop unrolling
even causes 10% performance degradation, because additional register usage limits the num-
ber of concurrent threads on each SM. Results of Givens QR algorithms for large and small
matrices are shown in Figure 15.

The bottlenecks of GSMP and GSMPNS are identified using an analytical model. The
bottleneck of GSMPNS is (CWP > MWP ), which means the performance is bounded by
memory accesses. The analytical model shows GSMP is computation bounded. However, this
does not mean GSMP can fully utilize the GPU. For large matrices of 3072 × 2048, GSMP
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Figure 15: Comparing HSMB with GSMP and GSMPNS

can run at most one thread block per SM. If threads per block is small (< 128), PWP causes
comp cycles to increase significantly. If threads per block is large (> 256), comp cycles will
increase because more data is processed in the RP stage where more branches and synchro-
nization instructions are executed. Figure 16 shows the results of benchmark and analytical
model. Benchmarks and the analytical model both show that best performance is obtained
when threads per block is between 128 and 256. This is the result of trade-offs between PWP
and RP overhead. On the other hand, HSMB performs matrix multiplications on GPUs,
which is neither limited by PWP nor control overhead. This explains the reason Givens QR
is not able to outperform Householder QR on GPUs.

5 Architecture Exploration

Graphics Processing Units(GPUs) have evolved from dedicated hardware to programmable
processors. NVIDIA GeForce has massive number of Processing Elements (PEs) that can
reach peak performance of 500 GFLOPS per chip, which is an order of magnitude higher
than CPUs. GeForce uses interleaved multithreading, also called barrel processing, to hide
off-chip memory latency. The performance of such architecture may be limited by available
threads, register pressure, scratchpad memory size, bandwidth. Given a budget of chip area,
it is difficult to make decisions on optimum PEs number, registers size, scratchpad size,
bandwidth, that lead to highest performance. This report proposed a model to answer these
questions.

Zvika Guz, et al.[12] published a model to analyze the trade-offs between many-core
approach and many-thread approach. Their model shows, given suitable applications and
architectural parameters, the many-thread approach can reach higher performance than the
few-thread approach. However, their model has limitations. There are two important ques-
tions which cannot be answered by their model:

1. Computer architects are usually given a budget of chip area, which has great impacts
on performance. Thus this question need to answered: ”Given an application and a
specific chip area, what is the optimum number of cores and threads?”
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Figure 16: Performance of GSMP by benchmark and analytical model (m = 3072, n = 2048,
b = 4). Running time is affected by threads per block. The analytical model overestimates
the RP overhead, because it is pessimistic on branch[15].

2. Scratchpad memory is superior to cache in terms of performance, area, and power
consumption[4]. Scratchpad memory is widely used in embedded systems, such as Cell
and GeForce. The model of Guz uses cache as local memory, which is the main cause of
the performance valley. Replacing cache with scratchpad memory is not straightforward.
An elementary approach would flatten the valley, as shown in Section 5.1, which provides
little information on design trade-offs. A more advanced model, which considers both
area and characteristics of applications, is necessary to predict the performance.

This report introduces an equal-area model. It has the following contributions.

1. We proposed an area model for GPU-like architecture. The area of register files and
scratchpad memory will constraint the number of concurrent threads.

2. The proposed model utilizes memory access patterns of the application, mainly on data
locality and working set size. This report uses matrix multiplication as example, but
the model can be applied to applications with other memory access patterns.

3. The proposed model is able to answer this question: ”Given an application and specific
chip area, what is the optimum number of cores and threads?”

5.1 An Elementary Scratchpad Memory Model

To the best of my knowledge, the model proposed by Zvika Guz, et al.[12] is the first and only
one that tries to analyze the trade-offs between Larrabee-like large-memory few-thread ar-
chitecture and GeForce-like small-memory many-thread architecture. The model of Guz uses
cache as local memory. In GeForce architecture, the local memory is scratchpad. Although
GeForce also provides caches for SMs, they are read-only and do not maintain consistency
with global memory. The constant cache has limited bandwidth, while the texture cache has
large latency[35]. Therefore, GPU kernels store working sets of threads on the scratchpad
memory.
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5.1 An Elementary Scratchpad Memory Model

Table 7: Parameters of Elementary Scratchpad Model
Parameter Description Value

NPE Number of PEs 1024

f Frequency of PEs 1 (GHz)

CPIexe Cycle per instruction 1

tavg Average global memory latency 600 cycles

rm Global mem access to computation ratio 0.05 to 0.2

smem Scratchpad memory size 128 (KB)

BWmax Memory bandwidth 50 to 100 (GB/s)

breg Load/Store size per thread per access 4 (Bytes)

workingsetmin Minimum working set per thread 12 (Bytes)

Zvika Guz’s model uses Equation 30 and 31 to measure the performance and utilization.
The model uses the parameter η to represent the utilization of the PEs.

Performance = NPE ·
f

CPIexe
· η (30)

η = min



1,
n threads

NPE ·
(

1 + tavg · rm

CPIexe

)



 (31)

To model the scratchpad memory, the formula of tavg and rm need to be changed accord-
ingly. In GeForce, the access latency to scratchpad memory is comparable to register latency,
which can be hidden by a small number of concurrent threads. Thus we only consider the
latency of accessing global memory. We assume tavg is 600 cycles. Typical value of rm for ap-
plications mapped to GPUs is between 0.05 to 0.2[35]. To model the effects of BW limitation,
Equation 30 is rewritten into 32. To model the limitation of scratchpad memory size, smem,
we assume on average each thread has a working set size workingsetmin. If the number of
concurrent threads is larger than smem/workingsetmin, we assume only a number of threads
with working sets fitting within the scratchpad memory can proceed. To model the limitation
of scratchpad memory size, Equation 31 is changed to Equation 33. A summary of the model
parameters is listed in Table 7. Here assumes each thread has a working set size of three
words, two as input data and one as output data.

Performance = min

(

NPE ·
f

CPIexe
· η,

BWmax

rm · breg

)

(32)

η = min



1,
min

(

n threads, smem
workingsetmin

)

NPE ·
(

1 + tavg · rm

CPIexe

)



 (33)

The result of this elementary model is shown in Figure 17. The bandwidth and scratch-
pad memory size introduce cut-off effects on the performance. Due to the absence of area
information and simple assumptions on both application and architecture, this elementary
model provides little information for design trade-offs. Thus we move on to a more advanced
model.
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5 ARCHITECTURE EXPLORATION
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Figure 17: An elementary model for scratchpad memory

5.2 An Equal-Area Model

Based on the observation of the elementary model, the equal-area model makes the following
improvements.

1. It models the area of register files and scratchpad memory required by concurrent
threads.

2. It models the register usage and working set size of applications.

3. It models the memory bandwidth using Memory Warp Parallelism[15], which introduces
cut-off effect on effective threads, as shown in Equation 38. It provides better perfor-
mance estimation than Guz’s model, in which bandwidth introduces cut-off effects only
on final performance.

The equal-area model reuses the performance equation of Guz’s model, as shown in Equa-
tion 34. We change the utilization factor η into Equation 35.

Performance = NPE ·
f

CPIexe
· η (34)

η = min



1,
effective threads

NPE ·
(

1 + tavg · rm

CPIexe

)



 (35)

We define effective threads as the number of concurrent threads that can be used to hide
global memory latency, as shown by Equation 36. effective threads are limited by the availabil-
ity of scratchpad memory for its working set and the bandwidth for concurrent memory trans-
fer. Define threads full smem as the maximum number of concurrent threads with working
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5.2 An Equal-Area Model

Table 8: Area of different components
Components Description Obtained Area (mm2)

Total Area of 16 SM Without Tex Cache Die Photo 118.88

Area of One SM Without Tex Cache Computed 118.88
16 = 7.43

16KB Shared Scratchpad Memory 16 banks 1RW CACTI 0.59

8096 32-bit Register File 16 lanes 2R1W CACTI 2.85

8 PEs, 2 SFUs, Constant Cache, Computed 7.43 − 0.59 − 2.85
I-Cache, MT Issue Unit, etc. = 3.99

Table 9: Values of Area Parameters
Parameters Obtained Value (mm2)

smem area per word Measured scratchpad area divided by size. 0.59
4×1024 = 0.144 × 10−3

reg area per word Measured register area divided by size. 2.85
8096 = 0.352 × 10−3

Total area Die Photo 118.88

fixed area per SM Computed in Table 8 3.99

set data on shared memory. Assume on average each thread requires at least workingsetmin

bytes of shared memory, which is application specific. The value of threads full smem is
computed by Equation 37.

effective threads = min (n threads, threads full smem, threads full BW) (36)

threads full smem = NSM ×
smemSM

workingsetmin
(37)

threads full BW =
bandwidth × tavg

f × bytes per thread
(38)

The die area of GeForce 8800 GTX is 470 mm2 in 90 nm technology[24]. According to
the measurement of die photo, approximately 119 mm2 is consumed by 16 Stream Multipro-
cessors. Our model sets 118.88 mm2 as the area limit that can be used for SMs. The area of
each SM is 7.43 mm2, which includes 1.03 mm2 for scratchpad memory and 2.63 mm2. The
remaining area of 3.77 mm2 consists of 8 PEs, 2 SFUs, Constant cache, Instruction Cache,
MT Issue Unit, etc., which is consider to be fixed in the model. The area of each component
is listed in Table 8.

Based on the result of previous experiments[39], this model assumes the area of register
file and scratchpad memory scales linearly with the storage capacity. The scaling parameters
are provided in Table 9.

The size of scratchpad memory per SM, smem, is calculated by Equation 39.

smem =
total area− n threads × reg per thread× reg area per word

NSM × smem area per word
(39)

NSM =
NPE

PE per SM
(40)

In systems with scratchpad memory, rm is highly application dependent. Thus, this report
uses matrix multiplication as an example. For matrix multiplication, the minimum working
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5 ARCHITECTURE EXPLORATION

Table 10: Values of Parameters
Components Description Obtained Value

Total area Area for all SMs fixed 118.88 mm2

Fixed area per sm fixed area per SM fixed 3.99 mm2

Smem area per word smem area per word fixed 0.144 × 10−3 mm2

Reg area per word register area per word fixed 0.352 × 10−3 mm2

PEs per SM number of PEs per SM fixed 8
NPE Number of PE Tuning parameter 128 to 216
n threads Number of concurrent threads Tuning parameter 1000 to 10000
NSM number of SM Computed Equation 40
Bandwidth bandwidth to global memory Tuning parameter 32 to 104(GB/s)
Regs per thread register used per thread Tuning parameter 10 to 30
CPIexe Cycle per instruction of PE Tuning parameters 1
f frequency of PE Tuning parameter 1.5(GHz)
tavg latency to global memory Tuning parameter 400 cycles
rm memory to computation ratio Computed Equation 41
Smem size of smem in words Computed Equation 39
Effective threads n threads limited by smem and BW Computed Equation 36
Threads full smem n threads limited by smem size Computed Equation 37
Threads full BW n threads limited by bandwidth Computed Equation 38
Bytes per thread ld/st bytes per thread Tuning parameter 4 bytes
workingsetmin Minimum workingset per thread Tuning parameter 3 words

set for a thread is two input elements and one output elements. Thus workingsetmin is equal
to 3 words. For matrix multiplication between matrices of size m× k and k × n, the amount
of MAC computation is k ×m× n. For blocked matrix multiplication of block size bm× bk
and bk × bn, the amount of memory access is k ×m × n × ( 1

bm + 1
bn)[43]. To generalize the

analysis, we assume bm is equal to bn. Thus rm is equal to 2
bn . Increasing block size bn will

reduce rm, which will increase performance, as shown by Equation 35. On the other hand, bn
is limited by the size of scratchpad memory, smem. From the above discussion, the minimum
value of rm for matrix multiplication is shown in Equation 41.

rm =
2√

smem
(41)

Table 10 summarizes parameters and their values specified in the following discussion.
The result of tuning is shown in Figure 18.

5.3 Analysis

Based on results shown in Figure 18, we have the following observations and explanations.

1. Given specific bandwidth, regs per threads and NPE, we observe that the performance
and the number of threads have the following relations. While n threads are small,
increasing n threads will increase the performance, because additional threads can hide
memory latency. While the number of threads is enough to hide memory latency,
the performance may enter a flatten performance region where PEs are fully utilized,
namely, η is equal to 1. However, if the number of PEs is large, the flatten performance
region may not be seen, because there may not be enough area left for registers and
scratchpad, which means Effective threads are limited by either Threads full BW or
Threads full smem before η reaches 1.

(a) Effective threads limited by Threads full BW. For systems with high bandwidth
and large regs per threads, such as Figure 18(a), effective threads is always limited
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Figure 18: Tuning bandwidth(bw), regs per thread(reg) and NPE(PE) to find the optimum
number of PEs (OPTNPE

).
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6 RELATED WORK

by threads full smem, because limited scratchpad size stops effective threads from
growing to saturating the bandwidth.

(b) Effective threads limited by Threads full smem. For systems with small bandwidth
and small regs per thread, such as Figure 18(f), effective threads will be limited first
by threads full BW, because more threads can have workingsetmin in scratchpad
memory, which will saturate the relatively small bandwidth.

2. Given specific bandwidth and regs per threads, there exists an optimum number of PEs
for highest performance. While NPE is small, they can be fully utilized with relatively
less threads, because more area can be used as scratchpad, which reduces rm. With
small NPE, peak performance can be reached with fewer threads, but it comes at a
price of low peak performance. Increasing the number of PE can increase the peak
performance, but the peak performance may not be reach if NPE is too large, because
effective threads are limited by either threads full smem or threads full BW, as described
above.

3. Given specific bandwidth, the optimum number of PE (OPTNPE
) increases as regs per thread

decreases. For the same number of n threads and NPE, smaller regs per thread allows
more area for scratchpad memory, which reduces rm and increases utilization.

4. Given specific regs per thread, reducing bandwidth may reduce OPTNPE
, as shown in

Figure 18(e) and 18(f), but it also may not reduce OPTNPE
, as shown in Figure 18(c)

and 18(d). The bandwidth has an cut-off effect on effective threads, as shown in Fig-
ure 19. Whether the reduction of bandwidth changes optimum number of PE depends
on whether the NPE of highest performance on the cut has changed while moving the
cut from right to left.

6 Related Work

Sunpyo Hong and Hyesoon Kim have proposed the first analytical model for GPUs[15]. Vasily
Volkov and James Demmel have benchmarked dense linear algebra on GPUs, and mapped
parts of the Householder QR algorithm on GPUs[43]. Andrew Kerr, Dan Campbell and Mark
Richards have mapped the complete Householder QR algorithm on GPUs[19]. Andrew Kerr,
Gregory Diamos, et al. have analyzed the characteristics of CUDA kernels and working on
ocelet tool chain[6][20]. Wilson Fung, et al. have proposed dynamic warp formation for GPU
architecture[10]. Ali Bakhoda, et al. have released GPGPU-sim tool chain that simulates ptx
code[3].

Interleaved multithreading, also called vertical threading or barrel processing, has been
adopted for decades[42]. The Multithreaded Vector Architecture[8] proposed by Roger Espasa
is an example of interleaved multithreading applied to vector architecture. The Simultaneous
Multithreaded(SMT) Vector Architecture[8] proposed by Roger Espasa, et al. has extended
multithreading to horizontal direction. In Espasa’s SMT vector architecture, the register file
for different threads are not decoupled, instead, they are renamed into the same register pool,
in a similar way as SMT superscalar architectures[40][14]. The complexity of register file
limits its scalability for larger number of threads.

32



 0

 100

 200

 300

 400

 500

 600

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

pe
rf

or
m

an
ce

 (
G

O
P

S
)

threads

Equal Area Model

smem limited
smem & BW limited

smem & BW & peak limited

Figure 19: Limitations of performance

Stephen W. Keckler and William J. Dally have proposed the concept of processor coupling[16],
which is implemented in the M-Machine[9]. M-Machine uses both vertical and horizontal mul-
tithreading, described as V-Thread and H-Thread, to fill the VLIW PEs. M-Machine replaces
the lock-step execution of [16] with barrier synchronization, which is similar to CUDA pro-
gramming model. M-Machine maps MIMD threads onto MIMD hardware. On the other
hand, the SIMT architecture maps MIMD threads onto SIMD hardware. M-Machine uses
VLIW PEs to utilize ILP within each thread, which is not present in current SIMT archi-
tecture. There are other attempts to apply horizontal multithreading to VLIW processor at
operation level[29] and cluster level[11].

Tirath Ramdas, Gregory K. Egan, et al. have proposed methods to map MIMD threads
onto SIMD hardware, which converts Thread Level Parallelism(TLP) into Data Level Paral-
lelism(DLP) at run time[32]. Their architecture does not decouple threads on horizontal and
vertical directions, which increases the complexity of thread selection logic. They introduced
the concept of thread window[33] as a complexity effective way to implement thread selection.
This architecture was designed for computational chemistry applications. However, some of
the concepts, such as thread window, may be applied to SIMT architecture.

Vector Lane Threading(VLT), proposed by Suzanne Rivoire, et al. uses horizontal multi-
threading on vector lanes[34]. Each vector thread has independent instruction stream fetched
by control processors. To provide sufficient instruction fetch bandwidth, the control proces-
sors are duplicated(CMP), or multiplexed(SMT), or both(CMT). Although VLT introduces
little overhead on the vector lanes, it requires complex control processor.

The Vector-Thread(VT) architecture[23], implemented in the SCALE processor[22], was
proposed by Ronny Krashinsky, et al. It utilizes both vertical threading and horizontal
threading over its Virtual Processors(VPs). The programming model hides the vector width
of the hardware by mapping VPs to hardware lanes at run time. Horizontal threads can
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7 CONCLUSION

execute different instruction streams. To provide enough instruction bandwidth, instruction
locality are exploited by both compiler and hardware. The VT compiler[13] converts Loop-
Level Parallelism(LLP) into TLP at compile time. The VT compiler also exploits instruction
locality by forming Atomic Instruction Block(AIB). Complexity-effectiveness and performance
is an important trade-off in the design of SCALE processor[21], which leads to an area efficient
implementation.

The Multithreaded Lockstep Execution Processor(MELP) proposed by Jaegeun Oh, et
al.[28] is another example of converting TLP into DLP by mapping MIMD threads onto
SIMD hardware. Threads in MELP are synchronized at barrier, which is similar to SIMT
architecture. MELP allows threads to diverge at the branch, executing both branches in a
similar way as SIMT architecture. However, MELP only uses horizontal threading, due to its
simple memory hierarchy and short pipeline.

A source-to-source SIMT code generation method was proposed by Cornwall, et al.[5].
It is based on algorithmic skeleton and focuses on computer vision application. CUDA-
lite[41], a source-to-source SIMT code generation method, was proposed to facilitate memory
optimization.

There are recent attempts to explore the design space of accelerator architecture. Hung
Ho Ahn, Mattan Erez, and William J. Dally have performed design space exploration on
ILP, DLP, and TLP in stream processors[1]. The TLP investigated in their design space
is horizontal threading on cluster-level. Aqeel Mahesri, et al. have explored the design
space of accelerator architecture for visual computing[25]. They came to the conclusion
that, with the same area, MIMD core outperforms SIMD core for a broad range of visual
computing applications. In their proposed architecture, two vertical threads are enough to
hide memory latency. Partially based on these results, John Kelm, et al. proposed the
Rigel[17] architecture and programming model. Rigel achieves high computation density
and energy efficiency, but requires applications to have high computation to memory ratio.
The design space of architecture is greatly affected by the characteristics of the applications.
Andrew Kerr, et al.[20] proposed a set of metrics, including control flow, data flow, SIMD and
MIMD parallelism, etc. for the analysis of GPGPU applications. These metrics of application
can be used as the guidance for architectures exploration.

7 Conclusion

This report investigates existing analytical model and extends it with kernel launch overhead
and pipeline warp parallelism(PWP). As shown in our experiment, when there are not enough
threads to hide pipeline latency, existing model can not provide accurate estimation of running
time. Therefore, extending existing model with PWP is necessary. Experiment result shows
the extension of PWP solves this problem.

This report analyzes performance of different QR factorization algorithms mapped to
distributed memory systems and shared memory systems. The analysis can explain the
observations of previous work and our experiment. The bottleneck of QR algorithms is
identified by the extended analytical model. The analysis and experiment results lead to the
conclusion that Householder QR factorization is more suitable for GPUs than Givens QR
factorization.

This report proposes an equal-area model for architecture exploration. The equal-area
model is based on GeForce-like many-thread architecture. It considers the data locality of
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applications and the area constraints of architecture. In the matrix multiplication example,
it estimates the performance, bottleneck, and optimum number of cores and threads for the
given chip area. It shows the trade-offs of architecture decisions are complicated, even for a
simple application. Therefore, an equal-area model is necessary and important in the design
space exploration of many-thread architecture.

8 Future Work

Construct a unified model for architecture exploration. Power consumption need be consid-
ered in the future architecture exploration. Evaluate SIMT architecture for other application
domains. Improve existing methods of mapping algorithmic skeleton to SIMT architecture.
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Appendices

A Area estimation with CACTI 3.2

The area of shared memory and register files in Table 8 are estimated by CACTI 3.27. The
usage of of the tool is described in [39]. To generate the area for scratchpad memory and
register file, we remove the tag area from cacti, as shown in Table 11 and 12.

Table 11: Area of Scratchpad Memory
Command arguments Description Value

C Cache size (Bytes) 1024

B Block size (Bytes) 4

A Associativity 1

TECH Technology (µm) 0.090

RWP Number of read/write port 1

RP Number of read port 0

WP Number of write port 0

NSubbanks Number of subbanks 1

Program variables Description Value

ADDRESS BITS Address bus width in bits 8

BITOUT Data bus width in bits 32

Results Description Value

Total area(mm2) Not including tag components 0.037

Scratchpad memory area(mm2) 16 banks, each of 1 KB 0.59

Table 12: Area of Register File
Command arguments Description Value

C Cache size (Bytes) 32768

B Block size (Bytes) 64

A Associativity 1

TECH Technology (µm) 0.090

RWP Number of read/write port 0

RP Number of read port 2

WP Number of write port 1

NSubbanks Number of subbanks 1

Program variables Description Value

ADDRESS BITS Address bus width in bits 9

BITOUT Data bus width in bits 512

Results Description Value

Total area(mm2) Not including tag components 2.85

7Available at http://www.hpl.hp.com/research/cacti/. Some program variables in source code need to be
modified.
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B EXAMPLES OF QR FACTORIZATION

B Examples of QR Factorization

A 4× 4 matrix A is used as an example to illustrate the procedures to perform Householder
QR factorization and Givens QR factorization.

A =









1 3 2 1
1 1 4 1
1 3 4 1
1 1 2 −3









B.1 Householder QR Factorization

Householder QR factorization annihilates A in 3 iterations.

1. Generate v1 and τ1 to form H1.

v1 = (1, 0.33, 0.33, 0.33)T , τ1 = 1.5

Apply H1 to A.

H1A =









−2 −4 −6 0
0 −1.33 1.33 0.67
0 0.66 1.33 0.67
0 −1.33 −0.67 −3.33









2. Generate v2 and τ2 for H2.

v2 = (0, 1,−0.2, 0.4)T , τ2 = 1.67

Apply H2 to A.

H2H1A =









−2 −4 −6 0
0 2 0 2
0 0 1.6 0.4
0 0 −1.2 −2.8









3. Generate v3 and τ3 for H3.

v3 = (0, 0, 1,−0.33)T , τ3 = 1.8

Apply H3 to A.

H3H2H1A =









−2 −4 −6 0
0 2 0 2
0 0 −2 −2
0 0 0 −2









B.2 Givens QR Factorization

Givens QR factorization annihilates A in 6 iterations.
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B.2 Givens QR Factorization

1. Generate G(3, 4, θ) to annihilate A(4, 1) with A(3, 1).

G(3, 4, θ) =









1 0 0 0
0 1 0 0
0 0 0.71 0.71
0 0 −0.71 0.71









Apply G(3, 4, θ) to A.

G(3, 4, θ)A =









1 3 2 1
1 1 4 1

1.41 2.83 4.24 −1.41
0 −1.41 −1.41 −2.83









2. Generate G(2, 3, θ) to annihilate A(3, 1) with A(2, 1).

G(2, 3, θ) =









1 0 0 0
0 0.58 0.82 0
0 −0.82 0.58 0
0 0 0 1









Apply G(2, 3, θ) to A.

G(2, 3, θ)G(3, 4, θ)A =









1 3 2 1
1.73 2.89 5.78 −0.58
0 0.82 −0.82 −1.63
0 −1.41 −1.41 −2.83









3. Generate G(1, 2, θ) to annihilate A(2, 1) with A(1, 1).

G(1, 2, θ) =









0.5 0.86 0 0
−0.86 0.5 0 0

0 0 1 0
0 0 0 1









Apply G(1, 2, θ) to A.

G(1, 2, θ)G(2, 3, θ)G(3, 4, θ)A =









2 4 6 0
0 −1.15 1.15 −1.15
0 0.82 −0.82 −1.63
0 −1.41 −1.41 −2.83









4. Generate G(3, 4, θ) to annihilate A(4, 2) with A(3, 2).

G(3, 4, θ) =









1 0 0 0
0 1 0 0
0 0 −0.5 0.87
0 0 −0.87 −0.5








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B EXAMPLES OF QR FACTORIZATION

Apply G(3, 4, θ) to A.

G(3, 4, θ)G(1, 2, θ)G(2, 3, θ)G(3, 4, θ)A =









2 4 6 0
0 −1.15 1.15 −1.15
0 −1.63 −0.82 −1.63
0 0 1.41 2.83









5. Generate G(2, 3, θ) to annihilate A(3, 2) with A(2, 2).

G(2, 3, θ) =









1 0 0 0
0 0.58 0.82 0
0 −0.82 0.58 0
0 0 0 1









Apply G(2, 3, θ) to A.

G(2, 3, θ)G(3, 4, θ)G(1, 2, θ)G(2, 3, θ)G(3, 4, θ)A =









2 4 6 0
0 −2 0 −2
0 0 −1.41 0
0 0 1.41 2.83









6. Generate G(3, 4, θ) to annihilate A(4, 3) with A(3, 3).

G(3, 4, θ) =









1 0 0 0
0 1 0 0
0 0 −0.71 0.71
0 0 −0.71 −0.71









Apply G(3, 4, θ) to A.

G(3, 4, θ)G(2, 3, θ)G(3, 4, θ)G(1, 2, θ)G(2, 3, θ)G(3, 4, θ)A =









2 4 6 0
0 −2 0 −2
0 0 2 2
0 0 0 2









42


	Introduction
	GPU Architecture
	Hardware Architecture
	Programming Model

	Analytical Model of GPU
	Kernel Launch Overhead
	Pipeline Warp Parallelism

	QR Factorization
	Householder QR Factorization
	Givens QR Factorization
	Performance Analysis of QR Factorization
	QR Factorizations on Distributed Memory Systems
	QR Factorizations on Shared Memory Systems

	Experimental Results and Analysis

	Architecture Exploration
	An Elementary Scratchpad Memory Model
	An Equal-Area Model
	Analysis

	Related Work
	Conclusion
	Future Work
	Acknowledgments
	References
	Appendices
	Area estimation with CACTI 3.2
	Examples of QR Factorization
	Householder QR Factorization
	Givens QR Factorization


