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Abstract. Augmented reality and virtual reality (AR/VR) systems con-
tain several different sensors including images sensors for gesture recog-
nition, head pose tracking and pupil/eye tracking. The data of all these
sensors must be processed by a host processor in real-time. For future
AR/VR systems, new sensing technologies are required to fulfill the
demands in power consumption and performance. Currently pupil de-
tection is performed with images on resolutions around 300x300 pixels
and above. Therefore, deep neural networks (DNN) need host platforms,
which are capable to compute the DNNs with such input resolutions to
process them in real-time. In this work, the image resolution for pupil
detection is optimized to a resolution of 100x100 pixels. A tiny pupil
detection neural network is introduced, which can be processed with the
ARM Cortex-M55 and the Embedded Machine Learning (ML) proces-
sor Arm Ethos-U55 with a performance of 189 frames per second (FPS)
with high detection rates. This allows to reduce the power consumption
of the communication between image sensor and host for future AR/VR
devices.

Keywords: Arm Ethos-U55, Arm M55, augmented reality, deep neural
network, machine learning, neural network processor, pupil detection,
virtual reality

1 Introduction

Pupil detection and Eye tracking is widely used for different kinds of applications
like eye tracking-based illness detection [1, 2], in-cabin sensing of cars to detect
the attention of the drivers and for augmented reality (AR) and virtual reality
(VR) systems. In the field of AR/VR systems, there are smart glasses used
for teaching, industry [3, 4], gaming [5, 6] and simulation systems [7]. Future
devices will use more and more human machine interfaces (HMI) to interact with
the environment through different sensors and displays. Hence, more and more
processing is required. Some of these systems allow a higher power consumption
but for other devices like smart glasses, power consumption is an important
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factor, which needs to be optimized. It is expected to use stacked configurations
for image sensors for future AR/VR devices stated by Chiao Liu et al. in [8].
Furthermore, conventional image sensors, cannot fulfill the requirements [9] for
future AR/VR systems. Probably next generation smart glasses will become
the next smart phones as stated by Chiao Liu et al. in [9]. Therefore, new
sensor technologies and system designs must be developed to lower the power
consumption of such AR/VR devices.

One idea to lower the power consumption is, to send less data from the
sensor towards the next processing levels as described by Chiao Liu et al. in [9].
For image sensors, the mobile industry processor interface (MIPI) 3 is used to
transfer the image sensor data to a host platform. If only region-of-interest (ROI)
data or images with lower resolutions are transferred from the image sensor to
the host, power consumption of the communication can be saved significantly, by
switching the MIPI interface into the sleep mode, shown by Gernot Fiala et al.
in [12]. To lower the amount of data transferred to the host, region-of-interest
(ROI) of the eye or even the processed data in form of pupil center coordinates
can be transmitted to the host. Both ways need some processing steps directly
on the image sensor. Machine learning algorithms for pupil detection outperform
standard edge-based pupil detection algorithms [13], but the processing demand
is higher. Sony developed in 2020 the first intelligent image sensor with integrated
processing units in a stacked layer configuration [14, 15]. Mobilenet V1 can be
processed directly on the sensor for object classification. Since image sensors
for pupil detection or eye tracking in AR/VR systems are required to have a
smaller form factor, the resources for processing units and memory are more
limited due to less available chip area. Therefore, optimizations of the image
processing system are required.

In this paper, the focus is on optimizing pupil detection with an image resolu-
tion of 100x100 pixels and a neural network, which can be processed on embedded
processors Arm M55 [16] in cooperation with the neural network processing unit
(NPU) Arm Ethos-U55 [17] and evaluate the pupil detection rate and execution
time. The main contributions of this paper are:

– Introduction of a tiny neural network for pupil detection with an input res-
olution of 100x100 pixels. A training process to improve the detection rate.
The trained neural network is quantized with TensorFlow Lite and can be
processed in real-time on embedded processors Arm M55 and Arm Ethos-
U55 with 189FPS and high detection rates.

– An extension of an existing pupil detection dataset, with images generated
from an image sensor software model with different illumination powers with
sensor specific artifacts and noise levels for a resolution of 100x100 and
200x200 pixels.

This paper is structured as follows: Section II shows related work with pupil
detection and optimization methods. Section III introduces the extension of the

3https://www.mipi.org/
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dataset. Section IV describes the neural network architecture, the training pro-
cess and quantization. Section V shows the pupil detection results and execution
times and Section VI concludes the paper.

2 Related Work

There is a lot of research in the area of pupil detection and eye tracking for
AR/VR applications. Several years ago, standard edge-based pupil detection
algorithm were introduced by Lech Swirski et al. [19], Wolfgang Fuhl et al. [22],
Amir-Homayoun Javadi et al. [24] and many more. More recently neural networks
and machine learning algorithms got more popular for pupil detection and eye
tracking. With synthetic eye data, the generation of datasets with ground truth
data is easier compared to a complete hardware setup. Some of the 3D eye models
use Blender [10,20,21,27], Unity3D [25,26] or even the Unreal gaming engine to
render images with ground truth data containing either eye segmentation, pupil
center coordinates, gaze vector or other eye information. Joohwan Kim et al.
highlights in [13], that machine learning algorithms outperform standard edge-
based pupil detection algorithms, but these neural networks use different kernel
sizes for convolutions and are deep neural networks (DNN). They require more
processing power than standard edge-based pupil detection algorithms and the
evaluation is mostly done with general purpose processors [22,23,28] or graphic
processing units (GPUs) [13]. With these hardware platforms, high frame rates
can be achieved, but for small AR/VR devices like future smart glasses not
suitable.

There is also research to improve the execution time for neural networks
as described by Wolfgang Fuhl et al. in [23]. They split the input image into
sections and use 2 neural networks to find the pupil center position. One neural
network is used for a rough estimation and the other one for a more accurate
estimation. It can be processed in 7ms with a single core and in 2ms with multi
core on an Intel i5-4570. Another algorithm was developed by Thiago Santini et
al. described in [28]. With an Intel i5-4590, 120FPS were reached.

Since the demand for smart or intelligent image sensors is growing, new meth-
ods are required to optimize the processing of such neural networks. The most
well known framework nowadays is TensorFlow [29] with TensorFlow Lite [30].
It allows a quantization of 32 bit float weights to 8 bit integer values. It lowers
the memory footprint of the whole neural network model. Another framework
is Apache’s TVM [31], a machine learning compiler to optimize the code for a
specific hardware architecture. Lately, the research in RISC-V processors and
code optimization with instruction set extensions is growing. Such extensions
can be single instruction multiple data (SIMD) or even hardware (HW) accel-
erators for speeding up the processing of convolutions or other neural network
related operations.

Conventional eye tracking hardware uses mainly embedded GPUs to process
the image frames from the image sensors, like Qualcom Snapdragon [32, 33].
They can process more than 60 frames per second (FPS) with higher resolu-
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tions. To make the AR/VR devices even smaller or even go to smart glasses,
the focus is more on embedded NPUs or image signal processors (ISP). The
research to develop embedded NPUs or ISPs is growing. There are new prod-
ucts on the commercial market, which are optimized with vector instructions
and HW-accelerators for neural network processing, like Arm M55 [16], Arm
Ethos-U55 [17] or Quadric Chimera [34].

In this work, pupil detection is optimized to an image resolution of 100x100
pixels. A tiny neural network for pupil detection was developed, trained and
tested with an extended pupil detection dataset with different illumination pow-
ers and noise levels. The trained neural network was quantized with TensorFlow
Lite and processed with the embedded processors Arm M55 and Arm Ethos-
U55. High frame rates of more than 90FPS can be achieved by using images
with 100x100 pixel resolution. The NPU accelerates the processing of the neural
network. This shows, that smaller embedded hardware can be used to process
neural networks with good performance. An image resolution of 100x100 pixel
is sufficient for pupil detection to get high detection rates.

3 Pupil Detection Dataset

For training the neural networks, large eye datasets are required. Therefore, we
used the modified 3D eye model from [10], which is based on [20, 21] to render
a dataset of 11000 images for each of the resolutions, 100x100, 200x200 and
500x500 pixels with the pupil center positions as ground truth information. Fur-
thermore, an image sensor model (ISM) was used to generate additional images.
The image sensor model contains proprietary information and processes. There-
fore, this paper does not explain internals of the ISM. However, the image sensor
model can be tuned with different illumination powers and different resolutions
for the output image. The generated output image contain camera artifacts and
noise. As input for the ISM, the rendered 500x500 pixel dataset was used to
generate output images with a resolution of 100x100 and 200x200 pixels shown
in Fig. 1. The illumination power is tuned with values of 1, 1

4 ,
1
16 and 1

64 . That
means, the illumination power was reduced each time by one quarter of the pre-
vious illumination power. Due to the output behaviour of the ISM, the generated
images with an illumination power of 1

16 look brighter compared to images gen-
erated with an illumination power of 1

64 . In total, the rendered eye dataset was
expanded by additional 44000 images with the previously mentioned illumina-
tion powers to a total image number of 55000 images for each of the resolutions
100x100 and 200x200 pixels. These dataset was used to train the neural network.

Example images of the dataset are shown in Fig. 2. On the left are the
rendered images and on the right the images generated by the ISM with different
illumination powers of 1, 1

4 ,
1
16 and 1

64 . The images with higher illumination
power are darker compared to the rendered images. Lower illumination power
increases the noise level. For an illumination power of 1

16 , the images are brighter
and noisy due to a specific bit readout strategy. A further reduction of the
illumination power adds even more noise to the images.
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Fig. 1: Generation of images with image sensor software model.

Fig. 2: Example images of the extended dataset. Left is the rendered image, then
images with illumination powers of 1, 1

4 ,
1
16 and 1

64 from left to right.

As separate test data, we got the small dataset generated by Gernot Fiala et
al. introduced in [11]. Here, two different image sensor models were used to tune
the pixel pitch value, which influences the brightness of the output images. We
used again the 500x500 image resolution of the rendered images as input for our
image sensor model and generated test images with the different illumination
powers in addition to the provided test images from [11]. A detailed overview of
the entire dataset with the subsets is shown in Table 1.

4 Tiny Pupil Detection Neural Network

Machine learning with neural networks for pupil detection is state-of-the-art
and neural networks outperform standard edge-based computer vision (CV) al-
gorithms. Therefore, the focus is on the development of a tiny pupil detection
neural network, which can be processed on Arm M55 and Arm Ethos-U55.
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Table 1: Overview of the pupil detection dataset for training and testing for each
resolution of 100x100 and 200x200 pixels with subsets.

Train Dataset Test Dataset from [11] Extended Test Dataset

11000x rendered 130x rendered 130x illPower 1
11000x illPower 1 130x ISM1 Set1 130x illPower 1

4

11000x illPower 1
4

130x ISM1 Set2 130x illPower 1
16

11000x illPower 1
16

130x ISM1 Set3 130x illPower 1
64

11000x illPower 1
64

130x ISM2 Set1
130x ISM2 Set2
130x ISM2 Set3

4.1 Architecture of Neural Network

Since input image resolution impacts the processing time of layers and the num-
ber of parameters of the neural network, we started with an input resolution of
100x100 pixels. The architecture of the model (model 1) is shown in Table 2. We
used Python 3.8.10 and TensorFlow version 2.10.0. All convolution layers have
a kernel size of 3, except for the last convolution layer, which has a kernel size 1.
The max pooling layers have size 2. The max pooling layers are used after the
first, third and fourth convolution layer. The activation function is ’relu’ for all
convolution layers and the first layer uses a random uniform kernel initializer.
In total this model has 363758 parameters. The parameter number is impor-
tant due to resource requirements for the processing on the Arm M55 and Arm
Ethos-U55.

We also slightly varied some layers to see the change in performance and
number of parameters. The changes described below were performed on model 1:

– model 2: The layers conv 3 and conv 4 were changed. The number of kernels
were increased from 24 to 32 and from 64 to 96. The number of parameters
increased to 452502.

– model 3: The max pooling layers were removed. For conv 1 and conv 3 a
stride of 2 were used and the kernel size of conv 5 was changed from 3 to 1.
This model has 618734 parameters.

– model 4: The kernel size of the first 2 convolution layer were changed to 5.
The number of kernels of conv 5 were changed from 256 to 128 and after
the convolution layer an additional max pooling layer with size 2 was added.
The kernel size of conv 6 was changed from 1 to 3. This model has 689934
parameters.

In addition to our own models, we used the DNN for pupil detection from
Nvidia described by Joohwan Kim in [13]. To process it for a 200x200 input
resolution, the stride of the first convolution layer had to be removed. The archi-
tecture is shown in Table 3. For a comparison of the models with different input
resolutions, the pixel error between the ground truth values and the predicted
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pupil locations were normalized to an image resolution of 500x500 pixels and the
pupil detection rate calculated.

Table 2: Architecture of tiny neu-
ral network for pupil detection
(model 1)

Layer kernel size output size

data 100x100x1
conv 1 3 100x100x10
max pool 1 2 50x50x10

conv 2 3 48x48x16

conv 3 3 46x46x24
max pool 2 2 23x23x24

conv 4 3 21x21x64
max pool 3 2 10x10x64

conv 5 3 8x8x256

conv 6 1 8x8x512

flatten 32768

dense 2

Table 3: Architecture of Nvidia
pupil detection DNN with 200x200
input
Layer kernel size stride output size

data 200x200x1
conv 1 9 200x200x24

conv 2 7 2 97x97x36

conv 3 5 2 47x47x52

conv 4 5 2 22x22x80

conv 5 3 2 10x10x124

conv 6 3 2 4x4x256

conv 7 3 2 1x1x512

flatten 512

dense 2

4.2 Training Process

For the training of the DNNs, the training dataset was used. In total, there are
55000 images per resolution available. The dataset was split into 80% train data
and 20% test data. From the train data again 10% where used as validation
dataset. Since, we require a very high accuracy of the pupil center prediction,
iterative training was used. An overview of this process is shown in Fig. 3. First,
the DNNs are trained with a learning rate of 0.0005 with a batch size of 32.
The model is trained, saved and tested. Then, for the next iteration, the already
trained model is loaded and retrained on the same dataset and again saved and
tested. We used 10 iterations to train the model and after half the iterations,
the learning rate was reduced to 0.0001. This allows the model to predict the
pupil center position with higher accuracy.

For all predictions, the pixel error is calculated and normalized to an image
resolution of 500x500 pixels. Then, the pupil detection rate is calculated, which
gives information of the correct detected pupil center position for a given pixel
error. Typically, a pixel error up to 5 is considered as correct detection. This
allows a good comparison between the models with different input resolutions.
Due to the normalization to a resolution of 500x500 pixels, the models should
be very accurate in the prediction because for a 100x100 pixel resolution, only
a pixel error of maximum 1 would be allowed to count as correct detection. The
Nvidia model was trained with the 200x200 dataset and also the results were
normalized to a resolution of 500x500 pixels.
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Fig. 3: Overview of the iterative training process for the DNNs.

4.3 Quantization of Neural Network and Simulation

After the training, all models were tested on the additional test set and the
extended test set with the different illumination powers, shown in Table 1. Af-
terwards, the models were quantized with the TensorFlow Lite converter from
32 bit float weights to 8 bit integer weights. The quantization process slightly
decreases the pupil detection rate.

The workflow of the model quantization and simulation on Arm M55 and
Arm Ethos-U55 is shown in Fig. 4. The trained model with the 32 bit float
weights is converted into the 8 bit integer model. Representative data are used
to create a data binary file with data information. These files are used together
with the quantized model as an input for the Arm Vela compiler, which generates
two header files, one for the data and one for the model. Both header files are
used in the Arm Development Studio (Arm-DS) 4 version 2021.1.

To simulate the Arm M55 and Arm Ethos-U55, Corstone SSE300 [18] ref-
erence package was used. The Arm-DS project was built and the run-time was
simulated with the fast cycle simulator. The cycle simulator counts the cycles for
processing the DNNs on Arm M55 and Arm Ethos-U55. With a given frequency,
the processing time can be calculated. In this work, the run-time was calculated
based on a frequency of 100MHz. The results are presented in the next section.

5 Results

This section shows the results of the tiny pupil detection neural network and
compares them with each other. Furthermore, a detailed analysis of the detection
rates is done based on the separate test sets introduced in Table 1.

4https://developer.arm.com/Tools%20and%20Software/Arm%20Development%
20Studio

https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio
https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio
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Fig. 4: Overview of model quantization with TensorFlow Lite and simulation on
Arm M55 and Arm Ethos-U55.

5.1 Detection Rate of Tiny Pupil Detection Neural Network

Each of the neural networks was tested separately on the different test sets.
A detailed overview of the detection rates for a pixel error of 5 is shown in
Table 4 and for the quantized model in Table 5. All detection rates, as already
mentioned, are normalized to a resolution of 500x500 pixels. For a 100x100 image
resolution this would equal to a pixel error of 1. As shown in Table 4 and Table 5,
all neural network models achieve similar normalized detection rates. However,
there are 2 test sets, where some models perform slightly worse compared to
others. For model 1 and model 3, the normalized detection rate is lower for the
test dataset ISM1 Set1 from [11]. This test set contains bright images that are
slightly overexposed. However, the normalized detection rate drops a little bit
for model 4 and the Nvidia model at the test data with illumination power being
set to 1

64 . This low illumination power generates a lot of noise, shown in Fig. 2
on the right side. The same results can be seen with the quantized models. In
some cases the detection rate drops, but it can also be a little bit higher due to
this quantization step. The overall performance of all models is very good and
all of the models are used for the run-time evaluation.

The edge-based CV algorithms Swiski [19] and ElSe [22] perform worse than
the neural networks, shown in Table 4. The highest detection rates with the
algorithms Swirski and ElSe are achieved for the rendered test dataset with
nearly 20% and 51.5%. For the other test sets, the detection rate drops. The
worst detection rate can be observed for the test set with illumination power
being set to 1

64 , with lower than 5%. The noise influences the edge detection steps
of the algorithms. Examples of a graphical comparison between the normalized
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pupil detection rates of the algorithms from Table 4 are shown in Fig. 5 for the
test dataset with illumination power being set to 1 and in Fig. 6 for the rendered
test dataset. All of the neural networks have a detection rate around 90%.

Table 4: Normalized pupil detection rates in % of the DNNs for the different test
sets at a pixel error of 5.

Test dataset model 1 model 2 model 3 model 4 Nvidia [13] Swirski [19] ElSe [22]

130x rendered 92.3 92.3 93.0 92.3 92.3 19.6 51.5
130x ISM1 Set1 87.6 91.5 82.3 94.6 92.3 16.6 38.4
130x ISM1 Set2 91.5 91.5 92.3 95.3 92.3 16.8 40.0
130x ISM1 Set3 91.5 91.5 91.5 92.3 92.3 16.6 43.0
130x ISM2 Set1 90.7 91.5 91.5 95.3 92.3 16.6 43.0
130x ISM2 Set2 91.5 92.3 91.5 93.8 92.3 15.7 44.6
130x ISM2 Set3 92.3 91.5 92.3 91.5 92.3 17.6 47.6
130x illPower 1

64
88.4 91.5 90.0 86.1 89.2 0.5 3.0

130x illPower 1
16

92.3 91.5 90.7 92.3 91.5 15.0 32.3
130x illPower 1

4
92.3 91.5 92.3 92.3 92.3 17.9 33.8

130x illPower 1 92.3 89.2 91.5 91.5 92.3 16.4 40.0
130 overall 91.1 91.4 90.8 92.5 91.9 15.39 37.9
20% of trainset 99.0 99.4 94.8 97.2 99.6 n.a. n.a.

Representative results of the pupil center detection of the TensorFlow Lite
converted model 1 are shown in Fig. 7. The white dots represent the ground
truth value and the gray X is the predicted pupil center position. The shown
images include different illumination powers, noise levels and brightness values.

5.2 Run-Time of Quantized Tiny Pupil Detection Neural Network

This section shows the run-time/cycle count simulation results with Arm M55
and Arm Ethos-U55 of the models simulated with the Arm-DS. The cycle counts
with the associated frame rates are shown in Table 6. Model 1 is the smallest
model, and therefore the fastest to be processed with 189FPS. Nearly all pro-
cessing is done on the Arm Ethos-U55. This is the same for all other models
except model 3. Model 3 is has less parameters compared to model 4 but it
takes much longer to process. This is due to the big flatten layer with 225792
parameters of model 3, which is too much for the U55 internal memory. There-
fore, the M55 takes over the processing. The advantages of the NPU are not
fully used in this case and the frame rate is much lower compared to the similar
sized model 4. The difference of the processing time is 48FPS. The M55 in this
case needs more than 374000 cycles. All of these models have an input resolution
of 100x100 pixel. The Nvidia model with an input resolution of 200x200 pixels
takes almost 11 million cycles on Arm Ethos-U55. Therefore, this model can only
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Table 5: Normalized pupil detection rates in % of the quantized DNNs for the
different test sets at pixel error of 5. Weights converted to 8 bit integer values.

Test dataset model 1 model 2 model 3 model 4 Nvidia [13]

130x rendered 92.3 92.3 93.0 91.5 92.3
130x ISM1 Set1 86.9 91.5 82.3 93.0 91.5
130x ISM1 Set2 92.3 92.3 91.5 94.6 92.3
130x ISM1 Set3 90.7 90.7 91.5 92.3 92.3
130x ISM2 Set1 90.7 91.5 91.5 95.3 92.3
130x ISM2 Set2 92.3 92.3 91.5 93.0 92.3
130x ISM2 Set3 90.7 90.7 90.7 92.3 92.3
130x illPower 1

64
90.0 90.7 90.7 84.6 90.0

130x illPower 1
16

92.3 91.5 92.3 92.3 91.5
130x illPower 1

4
92.3 91.5 92.3 92.3 92.3

130x illPower 1 91.5 89.2 91.5 91.5 92.3
130 overall 91.1 91.2 90.7 92.5 92.0

Fig. 5: Comparison of the normalized pupil detection rate on the test dataset
with illumiantion power being set to 1 for the edge-based algorithms Swirski [19],
ElSe [22], the neural network Nvidia [13] and your own neural networks model 1,
model 2, model 3 and model 4.
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Fig. 6: Comparison of the normalized pupil detection rate on the rendered test
dataset for the edge-based algorithms Swirski [19], ElSe [22], the neural net-
work Nvidia [13] and your own neural networks model 1, model 2, model 3 and
model 4.

be processed with 9FPS and is the slowest. The original Nvidia model uses an
input resolution of 293x293 pixels and was processed with Titan V and Jetson
TX2, shown in [13].

A comparison of the run-time with other algorithms is shown in Table 7. The
execution time for the Arm M55 and Arm Ethos-U55 are based on a frequency
of 100MHz. The values of the other algorithms are taken from the associated
papers that used different evaluation hardware. With 90–189FPS, our models are
in a good range for pupil detection even if they were processed on an embedded
hardware.

6 Conclusion and Future Work

This paper introduces a tiny pupil detection neural network, which can be pro-
cessed on the embedded processors Arm M55 and Arm Ethos-U55 with 189FPS
with a normalized pupil detection rate of around 90%. This was achieved with
the iterative training of neural networks and lowering the learning rate during
the iterations. The hardware capability of Arm Ethos-U55 limits the number of
parameters that can be used in the flatten layer. If the flatten layer has more
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Table 6: Arm M55 and Arm Ethos-U55 simulation results of the different pupil
detection neural networks. The used frequency is 100MHz.

model 1 model 2 model 3 model 4 Nvidia [13]

Parameters 363758 452502 618734 689934 1751814
cycle count M55 205 205 374242 205 206
cycle count U55 527073 623073 712073 713073 10846073
active cycles 526474 622604 711365 712170 10845500
idle cycles 599 469 708 903 573
total cycles 527278 623278 1086315 713278 10846279
exec. time [ms] 5.273 6.233 10.863 7.133 108.463
FPS 189.64 160.43 92.05 140.19 9.21

Table 7: Arm M55 and Arm Ethos-U55 simulation results with a used frequency
of 100MHz compared with execution times of other algorithms on different hard-
ware platforms.

model HW exec. time [ms] FPS

model 1 Arm M55/U55 5.273 189
model 2 Arm M55/U55 6.233 160
model 3 Arm M55/U55 10.863 92
model 4 Arm M55/U55 7.133 140
Nvidia [13] Arm M55/U55 108.463 9
Nvidia [13] Titan V 0.914 1694
Nvidia [13] Jetson TX2 3.781 264
ElSe [22] Intel i5-4570 7 142
PupilNet v2.0 [23] Intel i5-4570 2 500
PuRe [28] Intel i5-4590 8.333 120
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Fig. 7: Example images with the predicted pupil center position with the quan-
tized model 1 for different test subsets. The ground truth are highlighted with
a white dot and the prediction is a gray X.

than 65000 parameters, the Arm Ethos-U55 hands the processing back to the
Arm M55, due to memory limitations. Therefore, the advantages of the NPU
cannot be fully used, which significantly increases the processing time. Further-
more, an existing dataset was extended with images, which were generated by
an image sensor model. For that, different illumination powers were simulated,
which adds noise to the images and also changes the brightness. Using the pro-
posed tiny pupil detection neural networks, which achieve both good detection
rates and short processing times, future AR/VR image sensors can make use
of in-sensor processing to lower the power consumption of the communication
between the image sensor and the host.
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Future work is to extend the dataset with more challenging eye images (oc-
clusion, reflections). Additionally, the neural networks should be optimized with
Apache TVM and evaluate the performance on a RISC-V processor with an
instruction set extensions or HW-accelerators.
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25. E. Wood, T. Baltrušaitis, X. Zhang, Y. Sugano, P. Robinson, A. Bulling, ”Render-
ing of Eyes for Eye-Shape Registration and Gaze Estimation”, in Proc. of the IEEE
International Conference on Computer Vision (ICCV 2015), 2015.
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