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Abstract—Machine vision systems (MVS) use image sensors to
process and analyze image data. Depending on the application,
the image sensor parameters are configured differently. However,
some parameters are fixed for a specific product generation
or product line. One of these parameters is the pixel pitch,
the distance from one physical pixel to another. In this work,
we introduce a framework, which allows to optimize design
parameters of image sensors for pupil detection. We compare
2 different image sensor models with different pixel designs and
generate images with different bit depths and resolutions. An
evaluation of the design parameters is done with the generated
images and a pupil detection algorithm. Furthermore, an existing
pupil detection dataset is extended.

Index Terms—image sensor, design parameter optimization,
pixel pitch, bit depth, pupil detection

I. INTRODUCTION

Machine vision systems (MVS) are widely used in the
industry or agriculture for quality control to monitor the
production and sort out bad or defected products [1]–[6]. They
are also used in the consumer market for augmented reality
(AR) and virtual reality (VR) applications. The applications of
these MVS are different and therefore, the camera parameters
are set differently for the specific use cases. However, some
parameters can not be changed after production of the sensors.
Such parameters are the pixel design, the distance between
physical pixels (pixel pitch), the physical pixel size or the
resolution of the image sensors. In any case, it is desired to
optimize the image sensor parameters for certain use cases.

The focus of this work is on pupil detection and optimizing
design parameters for future image sensors for AR/VR appli-
cations. These future image sensors for AR/VR applications
should be smart with in-sensor processing [7], [8]. This means,
that algorithms are directly processed on the image sensor.
With these smart image sensors, power consumption of the
communication from the sensor to a host can be reduced and
the host platform can be further optimized to save energy
consumption [9]. Since there are only limited resources on
the image sensor available, especially for processing units
and memory, optimizations of the whole image processing
system and of the image sensor design parameters are required.

Some of these parameters are image resolution, bit depths and
pixel pitch. Optimizing these parameters can lead to a lower
memory usage for in-sensor processing and lower the power
consumption of the image processing system.

The main contributions of this work are:
• A framework to simulate image sensor design parameters

based on 2 different image sensor models with different
pixel designs, resolutions and bit depths. The output
images are evaluated with an pupil detection algorithm.

• An extension of an existing pupil detection dataset with
images generated by 2 different image sensor models with
different pixel designs, resolutions of 100x100, 200x200,
300x300, 400x400 and 500x500 pixels and bit depths
from 8 bits down to 1 bit. In total the dataset is extended
with additional 31200 images.

This paper is organized as follows: Section II shows re-
lated work of simulation frameworks for image sensors and
optimizations of image sensors or image processing systems.
Section III explains the framework for design parameter opti-
mization, shortly explains the used pupil detection algorithm
and gives an overview of the extended dataset. Section IV
presents the results and Section V concludes the paper.

II. RELATED WORK

Machine vision systems are used in different environmental
conditions and the camera parameters can influence the results
of the image processing system. Therefore, adjustments of the
camera parameters for the different use cases and environ-
mental conditions are necessary. P. Sibendu et al. introduce in
[10] a framework, CamTuner to automatically and dynamically
adapt sensors based on changes of the environment. They
automatically update camera parameters (contrast, brightness,
sharpness and color saturation) and evaluate the influence
of these parameters on the accuracy of face recognition,
person detection and face detection. With their framework,
the accuracy can be increased. Another simulation framework,
described by T. Nürnberg et al. in [11], focuses on mandatory
components of computational cameras. Such components are
apertures, lenses, spectral filters and sensors. The framework



consists of implementations of camera, sensor and tracer and
can generate ground truth data to evaluate the performance
of an image processing system. Another approach, described
by G. Fiala et al. in [12] is about optimizing image sensors
for specific applications, namely pupil detection for AR/VR
applications. They propose to reduce the bit depth of images
for pupil detection. A reduced bit depth can reduce the
memory consumption for in-sensor processing.

Additionally, the power consumption of the communication
from the image sensor to a host can be reduced by compressing
data. The image sensor data are compressed with a neural
network into a transmission map described by Pinkham et al.
in [13]. With this approach, energy of the communication
from the sensor to the host can be saved. However, data
decompression is needed and therefore, the overall energy
consumption stays similar. Another method to optimize an
image processing system is splitting deep neural networks
(DNN) into 2 processing layers. The first layer (L1) is for
in-sensor processing and the second layer (L2) is for edge
processing, described by Pinkham et al. in [14]. They analyzed
the performance and energy of MobileNetV3 [15] and ResNet-
50 [16] by finding the optimal split location of the neural
network. The neural network is processed at L1 and L2 with
different processors and different caching strategies. Based on
the neural network split, size and type of the processor, the
system energy consumption and performance was analyzed.
Smaller networks are more suitable for these two-processor
systems, because the minimum energy location is shifted for
smaller networks to a later layer.

In this work a simulation framework is introduced to op-
timize image sensor design parameters, namely pixel pitch,
resolution and bit depth. 2 different image sensor software
models are used to generate images with the named design
parameters. The images are used to extend an existing pupil
detection dataset and a pupil detection algorithm is used to
evaluate the image sensor design parameters.

III. METHODOLOGY

The main idea of this work is to optimize image sensor
design parameters for a pupil detection use case for AR/VR
applications. Since future sensors for AR/VR applications
should be smart with in-sensor processing [7], [8] and images
should be processed with limited resources, optimizations of
the image processing system are required. Such optimizations
are pixel pitch, resolution and bit depths. Therefore, novel
sensor designs are required.

This work proposes a framework to optimize image sensor
design parameters, namely pixel pitch, resolution and bit
depths for AR/VR applications. The parameters are then
evaluated with an pupil detection algorithm. An overview of
the framework is shown in Fig. 1.

In this work, the rendered images with a resolution of
500x500 pixels from [12] are used as input images for the im-
age sensor models. Both image sensor models are implemented
in Matlab 1 and are proprietary, but the methods described in

1https://www.mathworks.com/products/matlab.html

Fig. 1. Overview of the framework for image sensor design parameter
optimization.

TABLE I
VALUES FOR PIXEL PITCH USED FOR THE IMAGE SENSOR MODELS TO

GENERATE IMAGES.

Pixel pitch [µm]
Image sensor model Setting 1 Setting 2 Setting 3

ISM1 1.5 2.0 2.5
ISM2 2.3 2.8 3.3

this paper can be applied to publicly available sensor models
such as ISET [17]–[20]. Therefore, both models are labeled
as image sensor model 1 and 2 (ISM1 and ISM2), shown
in Fig. 1. They describe the image sensors with their pixel
designs, resolution and other design parameters. In this paper,
the values for the pixel pitch are tuned for ISM1 and ISM2.
The values are shown in Table I. Since the sensor models
are different, the values for the pixel pitch, and Full Well
Capacitance (FWC) are different. For ISM1 the FWC was
set to 15000e- and for IMS2 the FWC was set to 10000e-.
The FWC values were not changed for tuning the pixel pitch
values. The image sensor models generate images with sensor
specific artifacts based on their simulated design parameters
with resolutions of 500x500, 400x400, 300x300, 200x200 and
100x100 pixels. All generated images were used to create a
bit reduced dataset from 8 bits down to 1 bit with normalized
values between 0 and 255. In total there are 31200 images,
5200 for each pixel pitch setting of the image sensor models.

A. Pupil Detection Algorithm

An existing pupil detection algorithm [21], [22] was mod-
ified in [12] and the modified version [12] was taken for
the evaluation of the image sensor design parameters. An
overview of the algorithm stages is shown in Fig 2. The
pupil detection algorithm uses gray scale images as an input.
With integral images and Haar-like features a rough estimation
of the pupil location is done. For this region estimation a
minimum and maximum radius must be selected. In this work,
we used 3 different radii settings. The values were normalized
for the different resolutions and rounded to integer values,
shown in Table II. With the estimation of the pupil region,
an intensity-based segmentation with the k-means algorithm
is performed. Furthermore, Gaussian filter and morphological



Fig. 2. Overview of the used pupil detection algorithm.

TABLE II
MINIMUM AND MAXIMUM RADII SETTINGS OF THE ALGORITHM FOR THE

EVALUATION WITH DIFFERENT RESOLUTIONS.

Radii settings [pixel]
Resolution Setting 1 Setting 2 Setting 3

500x500 17/38 55/85 17/85
400x400 13/31 44/68 13/68
300x300 10/23 33/51 10/51
200x200 6/16 22/34 6/34
100x100 3/8 11/17 3/17

’open’ operations are used to smooth and denoise the image
of the estimated pupil region. Then, Canny edge detection
is used to find edges. 5 randomly selected edge points are
taken for ellipse fitting with Random Sample Consensus
(RANSAC). The center coordinates of the best fitted ellipse
are taken and compared with the ground truth data. Detailed
information of the pupil detection algorithm can be found
in [22]. Due to the randomly taken edge points, the pupil
center coordinates were calculated 10 times for each image
of the whole dataset. The pixel error was calculated based on
the processed pupil center coordinates with the algorithm and
the ground truth data. The pixel error is the Euclidean distance
from the processed pupil center coordinates to the ground truth
center coordinates. Additionally, the average pupil detection
rate was calculated. The detection rate shows how often the
pupil center coordinates were detected for a given pixel error
value. Usually, a pixel error up to 5 is considered as a correct
detection. For the different resolutions, the pixel errors were
normalized to values for a resolution of 500x500 pixels.

B. Dataset

The dataset consists of images with resolutions of 500x500,
400x400, 300x300, 200x200 and 100x100 pixels with different
gaze directions, pupil sizes, eye lid positions, 5 iris colors
and ground truth data. The rendered images with 8 bits and a
resolution of 500x500 pixels from [12] were used as inputs for
the image senor models to generate the simulated sensor output
with resolutions of 500x500, 400x400, 300x300, 200x200
and 100x100 pixels. These images were used to generate bit

Fig. 3. Example of images from the data set. The top row shows the rendered
image on the left and 3 images simulated with ISM1 with pixel pitch setting
1, setting 2 and setting 3 and the bottom row shows also the rendered image
on the left and 3 images simulated with ISM2 with pixel pitch setting 1,
setting 2 and setting 3.

Fig. 4. Comparison of the histograms of the images from Fig. 3. Again,
left the rendered images. In the top row 3 images generated with ISM1 and
in the bottom row 3 images generated images with ISM2 with the different
pixel pitch values.

reduced images with bit depths from 8 bits down to 1 bit.
Each image sensor model was configured with 3 different
values for the pixel pitch. An example is shown in Fig. 3
with the rendered image (left) and the generated images with
pixel pitch values (Table I). The Matlab models scale the
illumination power inversely to square of the pixel pitch. This
influences the output of the models, which can be observed in
the histograms of the generated images. The histograms get
shifted and compressed for higher pixel pitch values, shown
in Fig. 4. For smaller pixel pitch values, the illumination
power increases and the histograms shift towards brighter color
values. The ISM1 with a pixel pitch of 1.5µm has a high
number of very bright pixels. This has an influence of the pupil
detection rate, which will be discussed in the next section. An
example of an image from the dataset is shown in Fig. 5 with
the different resolutions and different bit depths.

IV. RESULTS

The whole dataset was processed 10 times with the algo-
rithm and the average pupil detection rate was calculated.
Usually, a pixel error up to 5 is considered as a correct
detection. For a comparison with the different resolutions,
the pixel error was normalized to a resolution of 500x500.



Fig. 5. Example of the dataset with resolutions 500x500, 400x400, 300x300,
200x200 and 100x100 with bit depths from 8 bits down to 1 bit (left to right).

The comparison of the image sensor parameters for a pixel
error of 5 is shown in Table III. Detection rates over 25% are
highlighted. The results with a resolution of 500x500 pixels are
similar compared to 400x400 and therefore not added into the
table. However, the performance with a resolution of 100x100
pixels is much lower compared to 300x300 and 400x400 and
was not considered for further investigations. The algorithm
radii setting 1 (RS1) performs better compared to all other radii
settings (RS). However, the average detection rates change
with the image sensor models, pixel pitch values, bit depths
and resolutions.

For ISM1 the best detection rate is 32.46% with radii setting
1, pixel pitch setting 2, 400x400 resolution and a bit depths
of 8 bits. Furthermore, for 300x300 resolution and 4 bits, the
average detection rate is only around 2% lower. For a smaller
pixel pitch (setting 1), the average detection rate is nearly the
same for 4 bits compared to 8 bits with a 400x400 resolution.
Also, for 300x300 the detection rate drops around 2%, but is
still above 29%. A more detailed look into this configuration
shows, that 2 and 3 bits perform better, shown in Fig. 6. Here,
the influence of the pixel pitch on the illumination power can
be seen for the generated image. The histogram is shifted
towards brighter values, which then effects the pupil detection
rate. For a resolution of 300x300 and 3 bits, the detection
rate is 33.53% and for 2 bits 36.84%, shown in Fig 6. For a
resolution of 400x400 with 3 bits a detection rate of 39.30%
is achieved and for 2 bits 39.23%. However, for higher pixel
pitch values for ISM1, the detection rate drops with reduced
bit depths and resolution. 2 and 3 bits are very sensitive to
illumination power and changes in pixel design parameters.
Therefore, they are unreliable for image sensors.

For ISM2, again the radii setting 1 gives the best results.
Furthermore, a reduction of the bit depth to 4 bits performs
better compared to 8 bits for the different resolutions for radii
setting 1, shown in Table III. Even for a resolution of 300x300
pixels and 4 bits, the detection rate is above 30%. With pixel
pitch setting 2 (PP2) and a resolution of 300x300, the detection
rate is even higher, compared to 400x400 with 8 bits. The

(a) (b)

Fig. 6. Average detection rate for ISM1 with pixel pitch of 1.5µm for
resolutions (a) 300x300 and (b) 400x400 pixels and bit depths from 8 bits
down to 1 bit.

TABLE III
RESULTS OF THE AVERAGE PUPIL DETECTION RATE FOR DIFFERENT

DESIGN PARAMETER SETTINGS FOR IMAGE RESOLUTIONS OF 200X200,
300X300 AND 400X400 PIXELS.

Image Parameter
200x200 300x300 400x400

Settings 4 bits 8 bits 4 bits 8 bits 4 bits 8 bits
ISM1 PP1 RS1 25.76 23.84 29.30 28.92 32.07 32.15
ISM1 PP1 RS2 18.00 17.30 16.84 14.61 15.69 15.53
ISM1 PP1 RS3 28.07 26.69 22.84 23.07 25.23 24.46
ISM1 PP2 RS1 27.84 23.46 29.53 26.07 31.15 32.46
ISM1 PP2 RS2 16.15 18.15 16.00 13.53 16.07 16.92
ISM1 PP2 RS3 22.92 23.30 24.76 26.30 23.00 23.46
ISM1 PP3 RS1 23.38 23.30 26.00 29.07 30.53 31.69
ISM1 PP3 RS2 18.92 19.30 16.15 16.07 16.23 18.30
ISM1 PP3 RS3 22.07 23.23 21.92 25.46 22.53 23.15
ISM2 PP1 RS1 25.84 23.23 31.69 28.46 33.69 32.76
ISM2 PP1 RS2 16.53 17.38 16.23 14.30 15.07 15.07
ISM2 PP1 RS3 26.61 23.61 28.15 24.84 24.30 23.69
ISM2 PP2 RS1 24.61 24.15 33.30 29.07 34.92 31.69
ISM2 PP2 RS2 18.23 18.23 15.53 16.00 13.84 18.53
ISM2 PP2 RS3 22.69 24.23 24.15 24.92 24.23 23.46
ISM2 PP3 RS1 28.07 23.00 32.30 27.76 35.38 33.07
ISM2 PP3 RS2 16.07 17.84 17.38 14.84 15.61 17.07
ISM2 PP3 RS3 25.38 23.23 28.00 24.07 28.23 23.69

ISM2 is more suitable for pupil detection with optimizations
of bit depths and resolution.

Regardless of the fact that 4 bits for ISM2 performs better
compared to 8 bits for certain configurations, a more detailed
look into other bit depths is also desired. The average detection
rate for ISM2 with different pixel pitch settings, radii setting 1
and resolutions of 200x200, 300,300, 400x400 and 500x500 is
shown in Fig. 7 to Fig. 9. The results of ISM2 with pixel pitch
setting 1 (PP1) is shown in Fig. 7. The discussion for 1 bit can
be neglected, the performance is too low and 1 bit does not
work. However, the average detection rates for 2 and 3 bits
are higher compared to other bit depths for all resolutions.
If the pixel pitch (PP) is changed to setting 2, 2 and 3 bits
perform similar to all the other bit depths, except for 1 bit.
If the pixel pitch is increased even further to setting 3, 2 and
3 bits perform worse compared to the other bit depths for all
resolutions.

The pixel pitch (PP) influences the performance of the
algorithm for 2 and 3 bits. This is due to the different illumi-
nation of the images and the changed histograms. An example



(a) (b)

(c) (d)

Fig. 7. Average detection rate for ISM2 with pixel pitch of 2.3µm for
resolutions (a) 200x200, (b) 300x300, (c) 400x400 and (d) 500x500 pixels
and bit depths from 8 bits down to 1 bit.

is shown in Fig. 4. The histogram gets shifted for lower
pixel pitch values towards brighter colors, since the Matlab
model scales the illumination power inversely to square of the
pixel pitch. For higher pixel pitch values the histograms get
shifted and compressed. Based on this results, optimized image
sensors can be designed for specific applications to increase
the performance of the image processing system. For pupil
detection 4 bits work nearly as good as 8 bits and for ISM2,
the performance is even higher. Also, 300x300 resolutions
work almost as good as 400x400 for specific settings. A
resolution of 500x500 gives similar results as 400x400. A loss
of performance becomes visible at a resolution of 200x200
pixels. 2 and 3 bits are very sensitive to design parameter
changes and are not reliable for future image sensors.

V. CONCLUSION AND FUTURE WORK

This paper introduces a framework for the optimization of
image sensor design parameters, namely pixel design with
pixel pitch, image resolution and bit depths for next gener-
ation AR/VR image sensors. 2 different image sensor models
are used and a pupil detection algorithm is used for the
evaluation of the generated images. Furthermore, the image
sensor models and pixel pitch values were used to extend
an existing pupil detection dataset with different resolutions
and bit depths. ISM2 performed better for this pupil detection
use case compared to ISM1. The results show, that the image
sensor design parameters can be optimized to a bit depth of 4
bits and to a resolution of 300x300 pixels. The results for 2
and 3 bits are very sensitive to design parameter changes and
not reliable for future AR/VR image sensors.

Future work is to investigate other sensor design parameters
and the illumination for further optimizations. Additionally,

(a) (b)

(c) (d)

Fig. 8. Average detection rate for ISM2 with pixel pitch of 2.8µm for
resolutions (a) 200x200, (b) 300x300, (c) 400x400 and (d) 500x500 pixels
and bit depths from 8 bits down to 1 bit.

(a) (b)

(c) (d)

Fig. 9. Average detection rate for ISM2 with pixel pitch of 3.3µm for
resolutions (a) 200x200, (b) 300x300, (c) 400x400 and (d) 500x500 pixels
and bit depths from 8 bits down to 1 bit.

the framework should be extended with additional algorithms,
mainly neural network-based models. Furthermore, a bigger
dataset should be rendered and generated with the image
sensor models to train and test neural networks.
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