

Cross-domain Modeling and Optimization of High-speed Visual Servo Systems

Zhenyu Ye, Eindhoven University of Technology and Connecterra BV Henk Corporaal, Eindhoven University of Technology Pieter Jonker, Delft University of Technology Henk Nijmeijer, Eindhoven University of Technology

Visual Servo Systems: a Multi-domain View

Focus: controlled and structured environments.

Challenges and Proposed Solutions

Challenge 1

Limitations of visual feedback: low sample rate, large delay, coarse quantization.

Proposed solution:

Design template for high-speed vision processing.

Challenge 2 Cross-domain couplings and trade-offs.

Proposed solution: A framework of methods for cross-domain modeling and optimization.

Axiomatic Design: an Example

N. P. Suh, "Axiomatic design theory for systems," Research in Engineering Design, vol. 10, no. 4, pp. 189–209, 1998.

4 Cross-domain Modeling and Optimization of High-speed Visual Servo Systems

TU/e

Design Matrix Obtained by Design Template

5 Cross-domain Modeling and Optimization of High-speed Visual Servo Systems

Delay: Coupling of Algorithm and Architecture

Approach: (1) algorithmic patterns (2) architecture template (3) high-level synthesis

3 configurations of architecture 3 image sensor sizes **Case Study** Image size Alg. Lanes Label Δ 3 vision $h \mid \mu s \mid$ $|\mu m|$ $\tau \mid \mu s \mid$ 120×75 120 450 0.78 621.6 A algorithms B 160×100 160 600 0.71 795.6 1 200×125 200 750 0.36 969.6 - 120×75 120 450 2.35 712.8 -902.4 160×100 160 600 0.63 2 - 200×125 200 750 0.3 1092 - 120×75 120 450 712.8 1.68 C 160×100 160 600 0.33 902.4 3 200×125 200 750 0.18 1092 D

(A)(B)(C)(D) are Pareto-optimal configurations

7 Cross-domain Modeling and Optimization of High-speed Visual Servo Systems

TU/e

Performance After Controller Optimization

(a) Precision

Root-Mean-Squared-Error (RMSE) of tracking a constant reference

(b) Bandwidth Error of tracking sinusoidal signals of different frequencies

Conclusions

- 1. Cross-domain modeling and optimization are **necessary**. Demonstrated improvement:
 - **20%** for tracking a constant reference.
 - **43%** for high-bandwidth applications.
- 2. The demonstrated improvements are *only achievable by* cross-domain modeling and optimization.
- 3. This paper provides **effective** methods for such a purpose.

Thank you.

Backup Slides

Visual Servo Systems: a Multi-domain View

Focus on high-speed visual servo systems in structured environments.

- Require little adaptability. **Predefined patterns** are often used.
- Typically optimized for accuracy and bandwidth.

Modeling Sample Period and Measurement Error

$$\begin{bmatrix} h \\ \bar{e} \\ \tau \\ K \end{bmatrix} = \begin{bmatrix} \star & 0 & 0 & 0 \\ \star & \star & 0 & 0 \\ \star & \star & 0 & 0 \\ \star & \star & \star & 0 \\ \star & \star & \star & 0 \\ \star & \star & \star & \star \end{bmatrix} \begin{bmatrix} I_s \\ alg. \\ arch. \\ P \end{bmatrix}$$
Exposure time of pixels function
$$h = t_{exp} + \frac{N_p}{R_d}$$

$$h = t_{exp} + \frac{N_p}{R_d}$$
And the evaluation of pixels time of readout time of readout time of t

12 Cross-domain Modeling and Optimization of High-speed Visual Servo Systems

Modeling Measurement Error

$$\begin{array}{c|c} \text{Sample period} & h \\ \text{Quantization error} & \hline{\epsilon} \\ \text{Delay} & \tau \\ \text{Controller} & K \end{array} = \left[\begin{array}{ccc} \star & 0 & 0 & 0 \\ \star & \star & 0 & 0 \\ \star & \star & 0 & 0 \\ \star & \star & \star & 0 \\ \star & \star & \star & 0 \end{array} \right] \left[\begin{array}{c} I_s \\ alg. \\ arch. \\ P \end{array} \right] \text{Image sensor} \\ \text{Vision algorithm} \\ \text{Processing architecture} \\ \text{Plant} \end{array} \right]$$

Quantization function

$$\epsilon = Q(x) - x = \Delta \left\lfloor \frac{x}{\Delta} + \frac{1}{2} \right\rfloor - x$$
Quantization error
Position of
image frame
sensitivity

Cross-domain Modeling and Optimization of High-speed Visual Servo Systems

Design Template of High-speed Vision Systems

Optimizing K: analytical method and simulaiton

Controller Gain

Image Sensors

IMAGE SIZES AND THEIR PROPERTIES.					
Image size [px]	Image Type	Resolution $[\mu m/px]$			
120×75	synthetic by downsampling	6.67			
160×100	in-situ measurement	5			
200×125	synthetic by upsampling	4			

т.

Vision Algorithms

Algorithm 1 :

Processing stages ① to ④ are the same for alg. 2 and alg. 3

Algorithm 2 & 3 :

Processing Stages of Vision Algorithms

PROCESSING STAGES OF THREE VISION ALGORITHMS.

Stages	Algorithm 1	Algorithm 2	Algorithm 3
1	projection	binarization	binarization
2	1D filter	2D filter	2D filter
3	segmentation	projection	projection
4	1D moment	segmentation	segmentation
		(bounding box)	(bounding box)
5	-	2D moment	segmentation
		(bounding box)	(contour)
6	-	-	2D moment
			(contour)

e

Vision Algorithm 3: Complexity Analysis

COMPLEXITY ANALYSIS AND MAPPING OF ALGORITHM 3.

Step	Complexity	Alg. Pattern	Mapping
	$ O(m \times n)$	Local	Parallel proc.
2	$O(m \times n)$	Neighbor	Parallel proc.
3	$O(m \times n)$	Reduction	Parallel proc.
4	O(m+n)	Scan	Sequential proc.
(5)	$O(m \times n)$	Local	Parallel proc.
6	$O(m \times n)$	Reduction	Parallel proc.

Vision Algorithm 3 on Architecture Template

TU/e

System Diagram

Quantization Error

Error "e" depends on image position "x" and displacement "d". Vision algorithms is lumped into function "g()".

$$e(x,d) = g(x+d) - g(x) - d.$$

Sample Period and Delay

Tracking Errors of a Constant Reference

